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Abstract

We present a technique, based on precomputed light transport, for
interactive rendering of translucent objects under all-frequency en-
vironment maps. We consider the complete BSSRDF model pro-
posed by Jensen et al. [2001], which includes both single and dif-
fuse multiple scattering components. The challenge is how to ef-
ficiently precompute all-frequency light transport functions due to
subsurface scattering. We apply the two-pass hierarchical technique
by Jensen et al. [2002] in the space of non-linearly approximated
transport vectors, which allows us to efficiently evaluate transport
vectors due to diffuse multiple scattering. We then include an ap-
proximated single scattering term in the precomputation, which
previous interactive systems have ignored. For an isotropic phase
function, this approximation produces a diffuse transport vector per
vertex, and is combined with the multiple scattering component.
For a general phase function, we introduce a technique from BRDF
rendering to factor the phase function using a separable decompo-
sition to allow for view-dependent rendering. We show that our
rendering results qualitatively match the appearance of translucent
objects, achieving a high level of realism at interactive rates.

CR Categories: I.3.3 [Computer Graphics]: Picture/Image Gen-
eration; I.3.7 [Computer Graphics]: Three-Dimensional Graphics
and Realism;

Keywords: Subsurface scattering, phase function, separable ap-
proximation, precomputed radiance transfer, Haar wavelets

1 Introduction

An accurate light transport model is essential for realistic image
synthesis. Traditionally light scattering by materials is modeled by
the BRDF (Bidirectional Reflectance Distribution Function), which
assumes that light enters and exits the surface at the same point. Al-
though this assumption is valid for metals, it is not valid for many
translucent materials we commonly encounter in the natural world,
such as marble, jade, wax, leaves, milk and human skin. Render-
ing these materials with the BRDF can create a hard, unconvinc-
ing appearance that overemphasizes small geometric details. On
the appropriate scale most materials exhibit translucency, making
them appear smooth and soft, blurring surface geometric details.
This is due to light entering and being scattered within the object,
a process known as subsurface scattering. Subsurface scattering
has been simulated offline using a wide range of proposed meth-
ods for participating media, such as finite element methods [Rush-
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Figure 1: The bird model rendered with a BSSRDF that includes
both single and multiple scattering under environment lighting.
Note its translucent appearance and the all-frequency shadows.

meier and Torrance 1987; Blasi et al. 1993], path tracing [Hanrahan
and Krueger 1993; Lafortune and Willems 1996], photon mapping
[Jensen and Christensen 1998; Dorsey et al. 1999] and diffusion
approximation [Stam 1995]. Recent advances allow efficient simu-
lation of subsurface scattering by the BSSRDF (Bidirectional Scat-
tering Surface Reflectance Distribution Function) model, which re-
lates outgoing radiance at a surface point to incident flux at all
points on the surface. By assuming homogeneous media, Jensen
et al. [2001] formulated the BSSRDF as the sum of single scat-
tering and a diffuse dipole approximation for multiple scattering.
Jensen et al. [2002] then presented a two-pass hierarchical integra-
tion technique to accelerate the computation of the multiple scat-
tering component remarkably. They also experimentally validated
that the importance of multiple scattering increases with the mate-
rial albedo. Several recent papers [Lensch et al. 2002; Mertens et al.
2003; Hao and Varshney 2004] exploit this property and implement
interactive systems for rendering multiple scattering. Unfortunately
these techniques cannot efficiently handle illumination and shad-
ows from an environment map, and they ignore single scattering.

Sloan et al. [2002] introduced precomputed radiance transfer (PRT)
for real-time rendering with low-frequency environment lighting.
They precompute for every vertex the radiance responses to a low-
order (25D) spherical harmonics (SH) lighting basis, and store them
as transport vectors. Relighting then reduces to the inner product
of a light vector, represented in the same SH basis, with the pre-
computed transport vectors. Later, Sloan et al. [2003] included
the diffuse multiple scattering component of the BSSRDF in their
PRT framework. Single scattering is approximated using a glossy
BRDF, but is not physically based. Due to linear approximation in
an SH basis, their system is limited to low-frequency lighting. To
improve the quality in all-frequency lighting environments, Ng et
al. [2003] proposed non-linear approximation in a wavelet basis,
and achieved interactive rates for diffuse BRDF rendering. This
approach is later extended by [Wang et al. 2004] and [Liu et al.
2004] to render glossy BRDFs. To incorporate the BSSRDF, we
face the challenge of deriving a compact formula for the light trans-
port function that allows for efficient precomputation. A straight-
forward solution would be to precompute for every vertex the ra-
diance responses to each lighting basis, then apply a non-linear



wavelet approximation. This is feasible for a small number of SH
lighting bases (25 in [Sloan et al. 2002]), however, it would incur
an impractical amount of computation time for the large number of
wavelet lighting bases (24,576 in [Ng et al. 2003]).

In this paper, we consider the complete BSSRDF model by Jensen
et al., composed of both single and diffuse multiple scattering com-
ponents. For multiple scattering, we apply their two-pass hierar-
chical technique [2002] in the space of transport vectors, which are
non-linearly approximated using a wavelet basis. In the first pass,
for selected surface sample points, we compute irradiance trans-
port vectors, which describe irradiance values parameterized on the
lighting environment. We compress these transport vectors using
a non-linear wavelet approximation. In the second pass, we hi-
erarchically integrate the precomputed irradiance transport vectors
to compute a per-vertex multiple scattering transport vector. For
single scattering, we use an approximated formula derived from
[Jensen et al. 2001]. For an isotropic phase function, we evaluate a
diffuse single scattering transport vector per vertex and combine it
with the multiple scattering component. For a general phase func-
tion, we use a technique similar to [Wang et al. 2004] and [Liu
et al. 2004]. Specifically, we factor the phase function using a sep-
arable decomposition [Kautz and McCool 1999] and keep K low-
order terms, each consisting of a purely light-dependent part and
a purely view-dependent part. We precompute K single scattering
transport vectors per vertex, corresponding to each light-dependent
part; the rendering algorithm then uses the view-dependent parts to
determine vertex color. We show that our rendering results qual-
itatively match the appearance of translucent objects, achieving a
high level of realism. To our knowledge, this is the first interactive
system incorporating all-frequency environment lighting and sub-
surface scattering with both single and multiple scattering.

2 Background

In this section, we briefly review the BSSRDF formulation by
Jensen et al. [2001] and their rapid two-pass hierarchical rendering
technique [2002]. The formulation assumes a homogeneous par-
ticipating medium, the properties of which are characterized by the
absorption coefficient σa, the scattering coefficient σs and the phase
function p(~ωi, ~ωo). The extinction coefficient is σt = σa +σs.

The BSSRDF describes subsurface scattering in such a medium by:

Lo(xo, ~ωo) =
∫

A

∫

2π
S(xi, ~ωi;xo, ~ωo)L(xi, ~ωi)(~ni · ~ωi)d~ωi dA(xi) (1)

where Lo is the outgoing radiance at point xo in direction ~ωo, L is
the incident radiance at point xi in direction ~ωi, and S is the BSS-
RDF. Jensen et al. [2001] define the BSSRDF as the sum of a single
scattering term S(1) and a diffuse multiple scattering term Sd :

S(xi, ~ωi;xo, ~ωo) = S(1)(xi, ~ωi;xo, ~ωo)+Sd(xi, ~ωi;xo, ~ωo)

Using a dipole source approximation, they derive Sd as:

Sd(xi, ~ωi;xo, ~ωo) =
1
π

Ft(η , ~ωi)Rd(||xi − xo||)Ft(η , ~ωo) (2)

where Ft is the Fresnel transmittance, η is the relative index of re-
fraction, and Rd is the diffuse reflectance computed by:

Rd(r) =
α ′

4π

[

zr(σtr +
1
dr

)
e−σtr dr

d2r
+ zv(σtr +

1
dv

)
e−σtr dv

d2v

]

(3)

where σ ′
s = (1−g)σs and σ ′

t = σa +σ ′
s are reduced scattering and

extinction coefficients, α ′ = σ ′
s/σ ′

t is the reduced albedo, g is the
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Figure 2: (a) Single scattering is computed by integrating over the
refracted outgoing ray ~ωo

′. xp is a sample point along the integra-
tion path. Incident path length s′i is approximated from observed
path length si by Eq 5. (b) We approximate single scattering by us-
ing the negative normal direction as the integration path. The blue
solid line shows the approximated observed path length si, and the
red dotted line is the true si. The approximation is more accurate
as xp gets closer to the surface, which also contributes more impor-
tance to the integral. dm is the maximum distance along the path.

mean cosine of the scattering angle, σtr =
√

3σa σ ′
t is the effective

extinction coefficient, dr =
√

r2 + z2r and dv =
√

r2 + r2v are the
distances from illumination point xi to the dipole source, r = ||xo −
xi|| is the distance between xi and xo, and zr = 1/σ ′

t and zv = zr(1+
4A/3) are the distances from xo to the dipole source. Here A =
(1+Fdr)/(1−Fdr), and Fdr is a diffuse Fresnel term approximated
by Fdr = −1.440/η2 +0.710/η +0.668+0.0636η .

The diffusion approximation requires an expensive integration of
light transport from all points on the surface. Jensen et al. [2002]
introduced a two-pass approach to accelerate the integration process
remarkably. The key idea is to decouple the computation of incident
illumination from the evaluation of BSSRDF, making it possible to
reuse illumination samples. Specifically, in the first pass they com-
pute irradiance values for uniformly sampled points on the surface.
These samples are stored in an octree, with each node storing clus-
tered values of all its child nodes. In the second pass they traverse
the octree by recursively subdividing nodes, evaluate the diffusion
approximation using clustered node values, and employ a simple
heuristic to decide the level to stop subdivision.

Single scattering is computed by the following equation in which
the BSSRDF single scattering term S(1) is implicitly defined:

L(1)
o (xo, ~ωo) = σs

∫

2π

∫ ∞

0
F p(~ωi

′, ~ωo
′)e−σt (s′i+s) L(xi, ~ωi)dsd~ωi (4)

where ~ωi
′ and ~ωo

′ are the refracted incoming and outgoing direc-
tions, F = Ft(η , ~ωi) ·Ft(η , ~ωo) is the combined Fresnel transmit-
tance, s′i and s are the scattering path lengths along ~ωi

′ and ~ωo
′, and

p is a normalized phase function. When sampling the illumination,
it is difficult to estimate s′i accurately since that requires finding the
point of refraction xi for arbitrary geometry. In practice, if we as-
sume that the surface at xi is locally flat and illumination is distant,
a good approximation of s′i can be found [Jensen et al. 2001] by:

s′i = si
|~ωi ·~ni|

√

1− ( 1
η )2 (1−|~ωi ·~ni|2)

(5)

where si is the observed path length as if the incident ray is not
refracted. The single scattering component (Eq 4) is derived from
previous work by Hanrahan and Krueger [1993] and is computed by
Monte Carlo integration along ~ωo

′. Figure 2(a) shows the scenario.



3 Algorithms and Implementation

In this section we derive the algorithms for precomputing transport
functions due to the BSSRDF and present an accelerated GPU im-
plementation. We assume a homogeneous medium illuminated by
distant environment lighting and consider only direct illumination.

Diffuse Multiple Scattering Since lighting is distant, we have
L(xi, ~ωi) = L(~ωi)V (xi, ~ωi) where V is the visibility. Substituting
Eq 2 into Eq 1, we can write down the outgoing radiance Ld due to
diffuse multiple scattering as:

Ld(xo, ~ωo) =
1
π

Ft(η , ~ωo)
∫

2π
L(~ωi)Td(xo, ~ωi)d~ωi (6)

Td(xo, ~ωi) =
∫

A
Rd(||xi − xo||)E(xi, ~ωi)dA(xi) (7)

E(xi, ~ωi) = Ft(η , ~ωi)V (xi, ~ωi)(~ni · ~ωi) (8)

where Td is the multiple scattering transport function to be evalu-
ated, E is the irradiance transport function at point of illumination xi
which describes light transport from the environment to xi, and the
diffuse reflectance Rd (defined in Eq 3) predicts the light transport
from xi to xo, similar to form factors in radiosity methods. Using
numerical cubature, we can evaluate the integral in Eq 6 as:

Ld(xo, ~ωo) =
1
π

Ft(η , ~ωo)∑
j

Td(xo, ~ω j)L(~ω j)

Now we can precompute Td for every vertex and store it as a trans-
port vector. Relighting then reduces to a simple dot product of Td
with the light vector L. Notice that the above relighting equation
holds when L is expressed in any orthonormal basis, such as spher-
ical harmonics or wavelets. This makes it possible to apply approx-
imation techniques for efficient storage and fast rendering.

As in [Ng et al. 2003], we parameterize the distant lighting on a
high resolution environment cubemap, and compress transport vec-
tors Td using non-linear wavelet approximation. To compute Td
efficiently, we apply the two-pass hierarchical technique by Jensen
et al. [2002], but perform the computation in transport vector space.
Specifically, in the first pass we compute irradiance transport func-
tions E for a set of uniformly distributed surface sample points.
We apply a wavelet transform on these transport functions, non-
linearly approximate them by keeping only a bounded number of
the largest wavelet coefficients, then quantize and store the coeffi-
cients as compressed transport vectors. In the second pass, we build
a kd-tree by clustering and summing the irradiance transport vectors
computed in the first pass. To reduce memory consumption, we al-
ways keep a bounded number of wavelet coefficients at each node,
and truncate the remaining. Next for each vertex we traverse the
kd-tree in the same manner as Jensen et al. and evaluate transport
vector Td by accumulating clustered irradiance transport vectors on
each node. The clustering and accumulating process is valid since
the wavelet transform is a linear operator. As the node level goes
up, some high-frequency components may be lost by truncation;
however, by keeping an appropriate number of wavelet coefficients
at each level, the artifacts are unnoticeable in our tests.

Single Scattering There are two difficulties in precomputing sin-
gle scattering according to Eq 4. First, the integration path is the
refracted outgoing direction, which is unknown at precomputation
time. Second, a general phase function depends on both incident
and view directions, making precomputation inseparable from ren-
dering. To this end, we propose two approximations to make pre-
computation feasible. First, we always place sample points along
the opposite direction of a vertex normal. By doing this, we have

Figure 3: Rendering of single scattering for the bird model using
phase function approximations. In both images a 4-term approx-
imation of an HG phase function is applied: the left image with
g = 0.25 (primarily forward scattering) and the right image with
g = −0.25 (primarily backward scattering).

approximated the view-dependent integration path with a view-
independent path known at precomputation time (see Figure 2(b)).
This approximation changes the observed incident path length si. It
is more accurate for sample points closer to the surface, which are
also the more important samples for the integral due to the exponen-
tial attenuation in s. Second, we approximate the phase function us-
ing a separable decomposition technique introduced by [Kautz and
McCool 1999], which has been used for BRDF rendering:

p(~ωi, ~ωo) ≈
K
∑
k=1

gk(~ωi)hk(~ωo) (9)

where K is the number of approximation terms, gk and hk are the
light map and view map, and are stored as textures to be indexed
with incident and view directions respectively. A number of ma-
trix factorization methods are available for the decomposition, from
which we choose singular value decomposition (SVD). With this
approximation, we can now handle phase functions in the same way
as [Wang et al. 2004] and [Liu et al. 2004] handle glossy BRDFs in
PRT. We substitute Eq 9 into Eq 4 and rearrange the terms:

L(1)
o (xo, ~ωo) ≈ Ft(η , ~ωo)∑

k
hk(~ωo

′)
∫

2π
L(~ωi)T (1)

k (xo, ~ωi)d~ωi

T (1)
k (xo, ~ωi) =

∫ ∞

0
σs Tp(xp, ~ωi)e−σt s ds (10)

Tp(xp, ~ωi) = gk(~ωi
′)Ft(η , ~ωi)e−σt s′i V (xi, ~ωi) (11)

where T (1)
k is the k-th single scattering transport function, corre-

sponding to the k-th phase function term. xp is the sample point
at distance s along the integration path, and Tp is the illumination
transport function at xp describing the amount of light transported
to xp from the environment but attenuated along the incident path.
Notice that for an isotropic phase function, the single scattering
transport function is in a diffuse form, and can therefore be com-
bined with the multiple scattering component. Using numerical cu-
bature, we write down the single scattering relighting equation as:

L(1)
o (xo, ~ωo) = Ft(η , ~ωo)∑

k
hk(~ωo

′)∑
j

T (1)
k (xo, ~ω j)L(~ω j)

Evaluation of T (1)
k can employ Monte Carlo techniques to integrate

Tp over the sample path. For importance sampling, we pick a ran-
dom distance along the sample path by s(ξ ) = − ln(1−λ ξ )/|σt |,
where ξ ∈ [0,1] is a uniformly distributed random number, |σt | is
the luminance of σt , λ = 1−e−|σt |dm is the normalization term, and
dm is the integration upper limit, which is the maximum distance
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Figure 4: Rendering of the bunny model with the components of a synthetic BSSRDF. We also show a BRDF rendering for comparison.

(a) (b) (c) (d)

Figure 5: Ray traced images of the
single scattering term (Eq 4) for the
head model using an HG phase func-
tion with g =−0.25. (a) is the true an-
swer using the refracted outgoing ray
as the integration path with 128 im-
portance samples; (b) is our approxi-
mation using the negative normal di-
rection as the integration path with
128 importance samples; (c) is similar
to (b) but uses only 16 deterministic
samples; (d) is rendered with a diffuse
BRDF for comparison.

along the path. The probability distribution function for this impor-
tance sampling is γ(s) = |σt |e−|σt |s/λ . In practice, since it takes
many random samples to eliminate noise, we instead use a fixed
number of N deterministic sample distances by taking s = s(ξi),
where ξi = (i−0.5)/N and i = 1 . . .N.

Precomputation We parameterize the distant lighting on a 6×
32 × 32 cubemap. Irradiance and illumination transport func-
tions are computed by rendering into OpenGL 16-bit floating point
pbuffers. This eliminates the need to download intermediate data
such as visibility maps to the CPU. For multiple scattering, we
first evaluate irradiance transport functions for a set of evenly dis-
tributed surface sample points. At each point, we rasterize a simpli-
fied model onto the six cubemap faces and set the stencil buffer to
one for every pixel drawn. The inverse of the stencil buffer, which
now stores the visibility information, is then applied to generate the
transport function according to Eq 8. For proper anti-aliasing, we
use 2×2 super sampling in rasterization. We then down sample the
data on the card and download the pbuffer to the CPU to perform
the non-linear wavelet approximation. The results are quantized
and stored as transport vectors similarly to [Ng et al. 2003]. Once
irradiance sampling is completed, we apply the hierarchical integra-
tion to compute transport vectors Td by the diffuse approximation.

For single scattering, we sample along the negative normal direc-
tion of each vertex. The integration upper limit dm is precomputed
using a ray tracer by shooting a ray along the negative normal direc-
tion and detecting the intersection. We use 16 deterministic samples
to integrate over the path. At each sample point, we again render
a simplified model into an OpenGL pbuffer with 2× 2 super sam-
pling. To correctly account for visibility, we set the stencil buffer
to increment by one for each fragment generated. A stencil count
above 1 thus means the incoming ray is occluded before entering
the object. Also in this pass, we output vertex normal and depth for
each fragment. These values are used in calculating ω ′

i and s′i for Tp
in Eq 11. The single scattering transport functions are computed by

summing the illumination transport functions of each sample point
according to Eq 10. This is accomplished on the GPU with 16-bit
floating point blending. If the phase function is isotropic, we then
sum the single and multiple scattering transport vectors to produce a
combined diffuse transport vector. For an arbitrary phase function,
we first tabulate the phase function by sampling both incident and
view directions on a 6×16×16 cubemap, then perform a SVD on
the tabulated data, keeping the first K = 4 terms and storing them
as cubemap textures. Each term contains a pair of light map and
view map. We apply the K light maps in precomputation as indi-
cated by Eq 11 and produce K transport functions per vertex. In
this case, each of the K = 4 transport functions is computed into
its own surface of a pbuffer using multiple render targets, elimi-
nating the need to recompute visibility for each term. We finally
transfer downsampled data to the CPU to perform the final step of
non-linear wavelet approximation. Computing the transport func-
tions on the GPU is essential, providing us with a performance gain
of an order of magnitude over an equivalent CPU implementation,
which uses the GPU only for visibility sampling.

Rendering To render, we dynamically sample the environment
map on a 6×32×32 cubemap and apply a 2D Haar wavelet trans-
form to produce the light vector. We compute the dot products of
the light vector with the transport vectors on the CPU. For a diffuse
transport vector, the results are scaled by the Fresnel transmittance
to determine the final vertex colors. For a K-term phase function ap-
proximation, these results need to be further combined with texture
lookups of the refracted view direction into the phase function view
maps (hk(~ωo

′)). The Fresnel term and ~ωo
′ are both computed in the

fragment shader that also accesses the view map textures. In ad-
dition, since specular highlights play an important role in perceiv-
ing translucent objects, we use a pre-convolved environment map to
add a specular component to the final rendering. Although the envi-
ronment mapping technique ignores self-shadowing, it qualitatively
simulates convincing appearance when combined with the translu-
cent base color, which has taken into account self-shadowing.
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Figure 6: From (a) to (d) we show renderings of single scattering using a 1-term, 4-term, 8-term and 16-term approximation for the HG
phase function with g = −0.4. (e) is rendered with the analytic phase function for comparison. (f) plots the decay of the RMS error of our
approximation as the number of terms increase. Each curve denotes an HG phase function with a different parameter g.

4 Results and Discussion

In this section we show our experimental results and verify our sin-
gle scattering approximations. Timings are recorded on an Intel
Pentium 4 2.53 GHz computer with 1 GB memory and an NVIDIA
GeForce 6800 GT graphics card. Our programs are compiled using
Intel Compiler version 8.0.

Figure 1 shows the bird model rendered with a synthetic BSSRDF
(σs = [0.75,0.85,1.00], σa = [0.02,0.04,0.07]) that includes both
multiple scattering and single scattering with an isotropic phase
function. To demonstrate our technique in all-frequency lighting
environments, we precompute this model using a 6×64×64 cube-
map resolution and keep 256 (∼ 1%) wavelet coefficients. Note the
high and low frequency shadows on the diffuse floor. This model
contains 60K vertices including the floor. It requires 45 minutes to-
tal precomputation time, and we can relight the model at 6 fps. For
all other tests, we use a smaller cubemap resolution of 6×32×32,
and keep 128 (∼ 2%) wavelet coefficients. Subsurface scattering
tends to blur the light across shadow boundaries and soften the over-
all look of an object. Therefore compared with the BRDF, the BSS-
RDF transport functions are relatively low-frequency, and a lower
cubemap resolution thus suffices. A good reference for accuracy
analysis of the non-linear wavelet approximation can be found in
[Ng et al. 2003]. The precomputation time, storage size and relight-
ing speed for our test models are listed in Table 1. View-dependent
rendering is maintained at real-time rates and are not listed.

Figure 4 and Figure 7 show renderings of the BSSRDF components
and compare them with a diffuse BRDF rendering. Figure 8 shows
the BSSRDF rendering of the dragon model with a Perlin style mar-
ble texture. Note the translucent appearance of the objects and how
the single scattering component adds a solid yet translucent look
to the models. In all these examples we use synthetic BSSRDF
parameters so that the contributions from the single and multiple
scattering components are about the same, and the single scattering
components are all computed with an isotropic phase function.

Single Scattering Approximation To verify our approximations
with single scattering, we render the single scattering component
for the head model using a Monte Carlo ray tracer according to
Eq 4. We use the BSSRDF parameters of a measured marble mate-
rial from [Jensen et al. 2001] and apply a Henyey-Greenstein (HG)
phase function with g = −0.25 (primarily backward scattering).
Figure 5 shows the comparison of the ray traced images and the
model is illuminated with a single distant light. Image (c) is ren-
dered with our approximation for the integration path and the de-
terministic sampling method, which qualitatively matches the true
answer in (a) yet is significantly faster. Note that the BRDF render-
ing in (d) is distinctly different from the other three.

Bird Buddha Bunny Dragon
No. of Vertices 31 K 56 K 72 K 78 K
Simp. Vis. 12 K 20 K 15 K 24 K
M.S. Sample Pts. 150 K 250 K 300 K 300 K
M.S. pass 1 P.T. 6 min 20 min 14 min 26 min
M.S. pass 2 P.T. 5 min 13 min 12 min 16 min
S.S. iso. P.T. 14 min 67 min 42 min 102 min
S.S. 4-term P.T. 17 min 73 min 48 min 108 min
Diff. Size 20 MB 37 MB 47 MB 51 MB
Diff. Light 25 fps 14 fps 12 fps 10 fps
4-term Size 79 MB 148 MB 188 MB 204 MB
4-term Light 6.5 fps 3.5 fps 3 fps 2.5 fps

Table 1: Precomputation and rendering profiles for our test models.
Each column lists the model size, the size of the simplified model
for visibility sampling; the number of sample points and the two-
pass precomputation time for multiple scattering; precomputation
time for single scattering, with an isotropic phase function and a
4-term separable phase function approximation; precomputed data
size and relighting speed for a diffuse and 4-term transport vectors.

To analyze our phase function approximation, we again use a ray
tracer to render the single scattering component for the head model,
with an increasing number of phase function approximation terms
K. In Figure 6 (a)-(e) we compare the results for an HG phase func-
tion with g = −0.4. We also plot the decay of RMS errors of our
approximation for several HG phase functions. As the parameter g
increases, the phase function becomes more directional and sharply
shaped, therefore requiring more terms to approximate accurately.
With K=4 we are limited to a low-order approximation of the phase
function. This is similar to the BRDF where more specular BRDFs
require more terms to approximate accurately. Finally we show
two renderings of the bird model under environment lighting in Fig-
ure 3. They are rendered using the HG phase function with g = 0.25
(primarily forward scattering) and g = −0.25 (primarily backward
scattering) respectively. Note their different appearances.

5 Conclusion and Future Work

Translucency is an attractive and important effect, but it is also chal-
lenging to simulate. In this paper we have presented a method,
based on precomputed light transport, for interactive rendering of
translucent objects under all-frequency environment maps. We in-
corporate the complete BSSRDF model in our precomputation, in-
cluding both single and diffuse multiple scattering components. For
single scattering, we propose several approximations to allow for



Figure 7: From left to right, the buddha model is rendered with the
BSSRDF multiple scattering component, combined multiple and single
scattering components, and a diffuse BRDF for comparison.

Figure 8: The dragon model rendered with the combined BSS-
RDF single and multiple scattering components. A Perlin style
marble texture is applied during the final rendering.

view-dependent rendering. This improves on previous interactive
systems, which have ignored the single scattering component. In
the future we plan to accelerate our precomputation for single scat-
tering by reusing illumination samples. The current system consid-
ers only direct illumination, and we would like to include global
illumination from outside the medium. We also plan to incorporate
multi-layered models into our system, which can increase accuracy
and realism for certain materials such as leaves and skin.

Acknowledgements The authors would like to thank Paul De-
bevec for the light probe images, Cliff Woolley for providing the
simplified models, and Matt Pharr and Greg Humphreys for the pbrt
ray tracing system. The 3D models are courtesy of the Stanford
University Computer Graphics Lab. and the Suggestive Contour
Gallery (http://www.cs.princeton.edu/gfx/proj/sugcon/models/)

References
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