
Abstract
We describe an approach for determining potentially visible

sets in dynamic architectural models. Our scheme divides the
models into cells and portals, computing a conservative estimate
of which cells are visible at render time. The technique is simple
to implement and can be easily integrated into existing systems,
providing increased interactive performance on large architec-
tural models.

Introduction
Architectural models typically exhibit high depth complex-

ity paired with heavy occlusion. The ratio of objects actually
visible to the viewer (not occluded by walls) to objects theoreti-
cally visible to the viewer (intersecting the view frustum) will
usually be small in a walkthrough situation. A visibility algorithm
aimed at reducing the number of primitives rendered can exploit
this property. Following prior work [1,2,3], we make use of a sub-
division that divides such models along the occluding primitives
into “cells” and “portals”. A cell is a polyhedral volume of space;
a portal is a transparent 2D region upon a cell boundary that con-
nects adjacent cells. Cells can only “see” other cells through the
portals. In an architectural model, the cell boundaries should fol-
low the walls and partitions, so that cells roughly correspond to
the rooms of the building. The portals likewise correspond to the
doors and windows through which neighboring rooms can view
each other.

Given such a spatial partitioning of the model, we can deter-
mine each frame what cells may be visible to the viewer. By
traversing only the cells in this potentially visible set (PVS), we
can avoid submitting occluded portions of the model to the graph-
ics pipeline. What cells comprise the PVS? Certainly the cell
containing the viewpoint is potentially visible. Those neighboring
cells which share a portal with the initial cell must also be
counted as potentially visible, since the viewer could see those
cells through the portal. To this we add those cells visible through
the portals of these neighbors, and so on. In this manner the prob-
lem of determining what cells are potentially visible to the viewer
reduces to the problem of determining what portals are visible
through the portals of the viewer’s cell.

luebke@cs.unc.edu (919) 962-1825
georges@cs.unc.edu (919) 962-1789
CB# 3175 Sitterson Hall; UNC, Chapel Hill, NC 27599-3175

Our system makes this determination dynamically at render
time. Rather than finding the exact PVS for each cell as a prepro-
cess, we postpone the visibility computation as long as possible.
This type of dynamic evaluation of portal-portal visibility is not
new. Earlier efforts have centered on precisely determining sight-
lines through portals; our method offers a less exact but much
simpler alternative. The algorithm has been implemented on the
Pixel-Planes 5 graphics computer at the University of North Caro-
lina and provides a substantial speedup on a sample model of
50,000 polygons.

Previous Work
Jones [1] explored the subdivision of geometry into cells and

portals as a technique for hidden line removal. In his algorithm,
models are manually subdivided into convex polyhedral cells and
convex polygonal portals. The subdivision is complete in the
sense that every polygon in the dataset is embedded in the face of
one or more cells. Rendering begins by drawing the walls and por-
tals of the cell containing the viewer. As each portal is drawn, the
cell on the opposite side of the portal is recursively rendered. In
this way the cell adjacency graph defined by the partitioning is
traversed in depth-first fashion. The portal sequence through
which the current cell is being rendered comprises a convex
“mask” to which the contents of the cell are clipped. If the inter-
section of a portal with the current mask is empty, the portal is
invisible and the attached cell need not be traversed.

More recent work has abandoned the attempt to compute
exact visibility information, focusing instead on computing a con-
servative PVS of objects that may be visible from the viewer’s
cell. The graphics pipeline then uses standard Z-buffer techniques
to resolve exact visibility. Airey [2] was the first to use a portal-
based approach effective in architectural environments. He
described multiple ways to approach the problem of determining
cell-to-cell visibility, including ray-casting and shadow volumes.
Teller [3] has taken the concept further and found a closed-form,
analytic solution to the portal-portal visibility problem. Using 2D
linear programming to test portal sequences against arbitrary visi-
bility beams, Teller computes a complete set of cell-to-cell and
cell-to-object visibilities in a preprocess. At render time this PVS
is further restricted according to which portals are actually visi-
ble. Teller’s approach is mathematically and computationally
complex, requiring hours of preprocess time for large models [3].

Motivation
Such a large preprocessing cost may be inappropriate for

interactive applications. For example, architectural walkthroughs
are often used for revision purposes. A visualization of a building
under design is more valuable to an architect if inquiries of the
type “What if I move this wall out ten feet?” can be answered
immediately. Adding portals, moving portals, and redistributing

Portals and Mirrors:
Simple, Fast Evaluation of Potentially Visible Sets

David Luebke and Chris Georges
Department of Computer Science

University of North Carolina at Chapel Hill

cells boundaries will all be common operations in an interactive
architectural design application. To take full advantage of the
static visibility schemes mentioned above, each of these would
require a potentially lengthy PVS recalculation best done off-line.

Envisioning such an application as our final goal, we
decided to focus on improving the dynamic visibility determina-
tion. Jones’ algorithm finds the exact intersection of 2D convex
regions, requiring O(n lg n) time for portal sequences with n
edges. Teller’s linear programming approach computes only the
existence of an intersection, and runs in time linear in the number
of edges. We sought a dynamic solution that would also run in lin-
ear time and would integrate easily into existing systems.

Faster Dynamic PVS Evaluation
We use a variation of Jones’ approach that employs bound-

ing boxes instead of general convex regions. Our scheme first
projects the vertices of each portal into screen-space and takes the
axial 2D bounding box of the resulting points. This 2D box,
called the cull box, represents a conservative bound for the portal;
that is, objects whose screenspace projection falls entirely outside
the cull box are guaranteed not to be visible through the portal
and may be safely culled away. As each successive portal is tra-
versed, its box is intersected with the aggregate cull box using
only a few comparisons.

During traversal the contents of each cell are tested for visi-
bility through the current portal sequence by comparing the
screenspace projection of each object’s bounding box against the
intersected cull box of all portals in the sequence. If the projected
bounding box intersects the aggregate cull box, the object is
potentially visible through the portals and must be rendered.
Since a single object may be visible through multiple portal
sequences, we tag each object as we render it. This object-level
culling lets us avoid rendering objects more than once per frame.

Alternatively, we can render each object once for every por-
tal sequence which admits a view of the object, but clip the actual
primitives to the aggregate cull box of each sequence. Under this
primitive-level clipping scheme objects may be visited more than
once, but since the portal boundaries do not overlap, no portion of
any primitive will be rendered twice. Typically object-level cull-
ing will prove more efficient, but for objects whose per-primitive
rendering cost far exceeds their clipping cost, primitive-level clip-
ping provides a viable option.

Implementation
We have implemented this approach on Pixel-Planes 5, the

custom graphics multicomputer developed at the University of
North Carolina. The traversal mechanism treats portals as primi-
tives to be rendered. Each portal consists of a polygonal boundary
and a pointer to the adjacent cell; when a portal is encountered
during traversal we test its axial screenspace bounding box
against the current aggregate cull box. If the intersection is non-
empty, we use it as the new aggregate cull box and recursively
traverse the connected cell.

We feel that modeler integration is crucial to this problem of
interactive model revision. If an architect wishes to move a wall
or broaden a doorway, the modeling system should be able to
make the change quickly and broadcast that change to the graph-
ics system. In our system the spatial partitioning of the model
into cells and portals is directly embedded in the modeler’s repre-
sentation. Portals are treated as augmented polygons, each tagged
with the name of the attached cell. Cells are simply logical group-
ings in the modeler’s hierarchy and need not necessarily be
convex. We have found this quite convenient when constructing
models; each room typically corresponds to a cell and it takes
only seconds to add and move a portal, or to reshape a cell. We
have already adapted two commercial modelers to our system,
which speaks to the simplicity of the integration process.

Results
We have tested our system on a subset of the UNC Walk-

through project’s model of Professor Fred Brooks’ house,
comprised of 367,000 radiositized triangles. The speedup
obtained by this visibility algorithm, like the speedup obtained by
similar schemes, is extremely view-and model-dependent. Over a
500-frame test path through the model, the frame rate using PVS
evaluation ranged from just over 1 to almost 10 times the frame
rate of the entire unculled model. For typical views the dynamic
PVS evaluation culled away 20% to 50% of the model. It should
be emphasized again that these numbers are specific to the model
and view path, but they certainly indicate the promise of the algo-
rithm as a simple, effective acceleration technique.

Ongoing and Future Work
Efficiency could be further increased by applying obscura-

tion culling to portals [4]. This scheme tests potentially visible
items against an “almost complete” Z-buffer before rendering.
This would allow the ‘detail’ objects in each cell as well as the
occluding cell walls to block portals, potentially reducing the
PVS. The Pixel-Planes architecture makes obscuration culling of
portals feasible, and we are currently exploring this possibility.

Teller mentions that the concept of portals may be extended
to mirrors [3]. Under this scheme mirrors are treated as portals
which transform the attached cell about the plane of the mirror;
this has the advantage of automatically restricting the PVS seen
through the mirror. Though conceptually simple, mirrors intro-
duce many practical difficulties which require additional clipping
by the rendering engine to resolve. For example, geometry behind
the mirror must not appear in its reflected “world,” and reflected
geometry must not appear in front or to the side of the mirror.

A special case that avoids these problems can be constructed
by embedding the mirror in an opaque cell boundary (for exam-
ple, a wall-mounted mirror in a bathroom), and we have
implemented such mirrors (Plate 1). The concept of an immov-
able mirror fits poorly with our goal of interactive, dynamic
environments, however, so we have focused on the more general
case. Clipping is complicated further by mirrors that overlap in
screenspace, and further still by mirrors which recursively reflect
other mirrors. At present our system allows static mirrors, which
can reflect each other to arbitrary levels of recursion, or more gen-
eral “hand-held” mirrors, (an example of free-moving portals),
which permit one-bounce reflections. We are currently working
on the dynamic, fully recursive case.

Acknowledgments
The authors would like to extend their sincere thanks to

Mike Goslin, Hans Weber, Power P. Ponamgi, Peggy Wetzel,
and Stump Brady. This work was supported by ARPA Contract
DABT63-93-C-C048.

References
[1] Jones, C.B. A New Approach to the ‘Hidden Line’ Problem.

The Computer Journal, vol. 14 no. 3 (August 1971), 232..
[2] Airey, John. Increasing Update Rates in the Building Walk-

through System with Automatic Model-Space Subdivision
and Potentially Visible Set Calculations. Ph.D. thesis, UNC-
CH CS Department TR #90-027 (July 1990).

[3] Teller, Seth. Visibility Computation in Densely Occluded
Polyhedral Environments. Ph.D. thesis, UC Berkeley CS
Department, TR #92/708 (1992).

[4] Greene, Ned, Kass, Michael, and Miller, Gavin. Hierarchi-
cal Z-Buffer Visibility. Proceedings of SIGGRAPH ‘93
(Anaheim, California 1993). In Computer Graphics Pro-
ceedings, Annual Conference Series, 1993, ACM SIG-
GRAPH, New York 1993, pp. 59-66.

Plate 1. View from the master bedroom of the Brooks House showing cull boxes for portals (white)
and mirrors (red).

Plate 2. Overhead view of the Brooks House, showing portal culling frustums active in Plate 1
(mirror frustum shown in red).

