
All-Frequency Relighting of Glossy Objects

RUI WANG, JOHN TRAN and DAVID LUEBKE

University of Virginia

We present a technique for interactive rendering of glossy objects in complex and dynamic light-

ing environments that captures interreflections and all-frequency shadows. Our system is based

on precomputed radiance transfer and separable BRDF approximation. We factor glossy BRDFs

using a separable decomposition and keep only a few low-order approximation terms, each consist-

ing of a purely view-dependent and a purely light-dependent component. In the precomputation

step, for every vertex we sample its visibility and compute a direct illumination transport vector

corresponding to each BRDF term. We use modern graphics hardware to accelerate this step,

and further compress the data using a non-linear wavelet approximation. The direct illumination

pass is followed by one or more interreflection passes, each of which gathers compressed transport
vectors from the previous pass to produce global illumination transport vectors. To render at run
time, we dynamically sample the lighting to produce a light vector, also represented in a wavelet
basis. We compute the inner product of the light vector with the precomputed transport vectors,
and the results are further combined with the BRDF view-dependent components to produce
vertex colors. We describe acceleration of the rendering algorithm using programmable graphics
hardware, and discuss the limitations and tradeoffs imposed by the hardware.

Categories and Subject Descriptors: I.3.3 [Computer Graphics]: Picture/Image Generation;
I.3.7 [Computer Graphics]: Three-Dimensional Graphics and Realism; I.3.1 [Computer Graph-

ics]: Hardware Architecture

General Terms: Algorithms, Performance

Additional Key Words and Phrases: BRDF, Separable Approximation, Global Illumination,

Graphics Hardware, Precomputed Radiance Transfer, Haar Wavelets

1. INTRODUCTION

Realistic rendering of objects at interactive rates continues to present a great chal-
lenge in computer graphics. To achieve a high level of realism, a rendering system
must be able to model physically based surface reflectance, allow for large-scale
lighting environments, and produce global illumination effects such as shadowing
and interreflections. Conventional image synthesis techniques such as Monte Carlo
ray tracing [Kajiya 1986; Veach 1997], photon mapping [Jensen 1996], and radiosity
[Cohen and Wallace 1993] simulate complex illumination effects, but are too expen-
sive for real-time applications. Image relighting [Dorsey et al. 1991; Ashikhmin and
Shirley 2002; Ng et al. 2003] and environment matting techniques [Zongker et al.
1999; Peers and Dutré 2003] faithfully reproduce realistic images under dynami-

Authors’ address: Department of Computer Science, University of Virginia, 151 Engineer’s Way,
Charlottesville, VA 22904; email: {ruiwang, johntran, luebke} @ cs.virginia.edu.

Permission to make digital/hard copy of all or part of this material without fee for personal

or classroom use provided that the copies are not made or distributed for profit or commercial

advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and

notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,

to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 20YY ACM 0730-0301/20YY/0100-0001 $5.00

ACM Transactions on Graphics, Vol. V, No. N, Month 20YY, Pages 1–29.



2 · Rui Wang et al.

cally changing lights; however, they assume a fixed viewpoint. Light fields [Levoy
and Hanrahan 1996; Gortler et al. 1996] and surface light fields [Wood et al. 2000;
Chen et al. 2002] capture realistic view-dependent appearances of physical objects
at interactive rates; however, they assume a fixed lighting environment. Our goal is
to build a system that allows the user to interactively manipulate both the lighting
and the viewpoint, while taking into account complex illumination effects, including
intricate hard and soft shadows, and glossy interreflections.

In 2002, Sloan et al. [2002] introduced the precomputed radiance transfer (PRT)
technique for rendering models with low-frequency environment maps. They pre-
sented a compact representation of the light transport function in a vector form on
spherical harmonic basis. Relighting then reduces to a simple inner product of a
light vector, also represented in spherical harmonics basis, with the precomputed
transport vectors. View-dependent rendering of glossy surfaces uses precomputed
transport matrices instead of transport vectors. This technique is fast and compact;
however, it is limited to low-frequency lighting environments due to the approxi-
mation using low-order (25D) spherical harmonics. Therefore, it is only accurate
for very soft shadows. To alleviate this problem, Ng et al. [2003] proposed using
non-linear wavelet approximation to adaptively choose the best set of wavelet bases
for approximation of the lighting over a broad range of frequencies. This improved
approach renders both soft and hard shadows at interactive rates, and is commonly
referred to as all-frequency PRT. For changing viewpoint, they were limited to dif-
fuse BRDFs. This is because glossy BRDFs require an additional sampling in the
view to produce view-dependent effects, the cost of which is significantly higher.
Later, Ng et al. [2004] developed wavelet triple product integrals for all-frequency
relighting of glossy BRDFs. Their system provides very high quality but is not
interactive, requiring a few seconds to render.

Recently Liu et al. [2004] and we [Wang et al. 2004] independently proposed a
new formulation that combines separable BRDF approximation [Kautz and McCool
1999] with the wavelet-based PRT for interactive relighting of glossy objects. We ap-
ply a separable decomposition to approximate glossy BRDFs with a few low-order
terms, each consisting of a purely light-dependent and a purely view-dependent
component. The key idea is that the light-dependent components are baked into
precomputation as part of the transport function definition, and the view-dependent
components are accessed during rendering to produce view-dependent effects. How-
ever, both papers are limited to direct illumination, ignoring interreflections. In this
article we show through derivation that interreflections can be efficiently simulated
in the same framework without sacrificing rendering performance. The only ad-
ditional cost is at precomputation, where the direct illumination pass is followed
by one or more interreflection passes. Each interreflection pass gathers transport
vectors from the previous pass, producing a new set of vectors carrying bounced
illumination. The additional computation simulates both diffuse and glossy inter-
reflections at the same time, and does not increase precomputed data size, allowing
us to portray interreflections at the same rendering speed.

In general, any precomputation technique is a form of sampling in the 6D space of
light direction, view direction and surface location, which must be densely sampled
in order to resolve high-frequency illumination effects. For example, high-frequency

ACM Transactions on Graphics, Vol. V, No. N, Month 20YY.



All-Frequency Relighting of Glossy Objects · 3

shadows require dense sampling in the light direction; highly glossy surfaces re-
quire dense sampling in both the light direction and view direction. Due to the
difficulty in precomputing, storing, and rendering such high dimensional datasets,
current interactive techniques choose to dramatically reduce the sampling rates in
one or several of the dimensions. For example, Sloan et al. [2002] use low-order
spherical harmonics to represent the lighting and BRDFs, producing low-frequency
sampling in both the light direction and view direction. By bandlimiting the illu-
mination, their approach is only accurate for very low-frequency lighting as well as
view-dependent effects, manifested by the lack of sharp shadows and highly glossy
surfaces. Other approaches such as light fields or image relighting simply ignore
one of the sampling dimensions, such as the light direction or the view direction.
The wavelet triple product integrals technique by Ng et al. [2004] preserves high
frequency sampling in all six dimensions, but their system is not interactive and
requires a large amount of memory to compute. Our system approaches the sam-
pling problem by choosing a high sampling rate for the lighting but a low sampling
rate for the view. This is achieved by combining non-linear wavelet approximation
for the lighting with low-order separable approximation for the BRDF. As a result,
we have bandlimited high-frequency specularities; however, unlike the spherical
harmonics based approach, our renderings preserve intricate all-frequency shadows
while remain at interactive rates.

In low-frequency PRT, various global illumination effects have been incorporated,
such as interreflections [Sloan et al. 2002] and translucency [Sloan et al. 2003]. Be-
cause of its very low sampling rate in the lighting (e.g. 25 spherical harmonics
bases), practically any complex illumination effect can be precomputed using a
unified approach, which illuminates the scene with each lighting basis in turn and
computes the per-vertex radiance response to each basis. These radiance responses
then directly form the transport functions. However, in all-frequency PRT, the
required sampling rate is orders of magnitude higher (e.g. 24, 576 wavelet bases),
making the same approach intractable in terms of computation time and storage
size. View-dependent effects are even more difficult to handle as they require addi-
tional sampling in the view. Our system circumvents these problems in two ways.
First, we densely sample the source lighting in the direct illumination pass, which
is efficiently computed using graphics hardware; then each interreflection pass only
sparsely samples and gathers illumination transport (in compressed form) from the
previous pass. This eliminates the need to obtain a full transport function per
vertex prior to wavelet approximation. Second, by projecting our transport func-
tions onto the low-order BRDF bases (which comes from the BRDF factorization),
we have bandlimited the frequency content in the view, reducing its sampling rate
without sacrificing the high frequencies in the lighting (hence the sharp shadows).
These design decisions allow us to precompute interreflections in a practical amount
of computation time with reasonable storage requirements.

In [Wang et al. 2004] we have discussed the use of programmable graphics hard-
ware to accelerate the precomputation step. For the rendering step, our CPU imple-
mentation is interactive for changing viewpoint, but barely interactive for changing
light. In this article we have implemented the entire rendering algorithm on modern
graphics hardware. The most costly computation during lighting change is a sparse

ACM Transactions on Graphics, Vol. V, No. N, Month 20YY.



4 · Rui Wang et al.

vector inner product, which we have accelerated using a GPU-based algorithm. Our
sparse vectors are represented on the GPU in a similar way as described by Bolz et
al. [2003] and Krüger and Westermann [2003]. However, we exploit the fact that
our sparse vectors have the same number of non-zero elements to better optimize
the data layout and improve texture access performance. Finally, we present and
discuss several different possible GPU implementations of the rendering algorithm.

2. PREVIOUS WORK

2.1 Precomputation Techniques

In computer graphics, people have become increasingly interested in illuminating
models by captured environment maps. One big challenge is that this type of illumi-
nation requires computing a very expensive integration over all lighting directions,
preventing it from being used directly in real-time. Several techniques exploit pre-
computed information to help achieve interactive rendering rates. In this section
we briefly review these techniques and discuss their limitations.

Environment maps were first introduced by Blinn and Newell [1976] to approx-
imate specular reflection of distant environments. Since then, several approaches
have been proposed to simulate diffuse and glossy reflections based on preconvo-
lution of environment maps [Greene 1986; Kautz and McCool 2000; Ramamoorthi
and Hanrahan 2001; 2002]. However, they ignore visibility and therefore cannot
handle self-shadowing or interreflections.

Image relighting techniques precompute global illumination solutions for a set of
lighting bases, such as points [Dorsey et al. 1991], polynomials [Malzbender et al.
2001], steerable functions [Ashikhmin and Shirley 2002], compressed principal com-
ponent bases [Debevec et al. 2000], and wavelets [Ng et al. 2003]. These techniques
can handle dynamic lighting change and complex illumination effects; however, ren-
dering requires a fixed view. Shadowing techniques have also been presented such
as convolution textures [Soler and Sillion 1998], attenuation maps [Agrawala et al.
2000], and precomputed visibility [Heidrich et al. 2000], but they do not allow for
real-time dynamic lighting or complex self-shadowing geometry.

Light fields [Levoy and Hanrahan 1996; Gortler et al. 1996] record radiance sam-
ples as they pass through a pair of viewing planes. Surface light fields [Wood et al.
2000; Chen et al. 2002] record exitant radiance in sampled directions over an ob-
ject’s surface. These techniques allow for view-dependent rendering of complex
surface appearances, but are limited to static lighting environments.

Recently, Sloan et al. [2002] introduced precomputed radiance transfer (PRT)
for interactive rendering of objects under low-frequency dynamic lighting. They
precompute light transport functions, which capture the way an object shadows,
scatters, and reflects light, and represent them as transport vectors in a low-order
spherical harmonics (SH) basis. Rendering is then reduced to a simple inner product
of a light vector, also represented in the SH basis, with the precomputed transport
vector. In the case of glossy BRDFs, a transport matrix is precomputed for ev-
ery vertex to allow for view-dependent rendering. Their work was later extended
[Kautz et al. 2002; Lehtinen and Kautz 2003; Sloan et al. 2003] to achieve better
compression rates and improve rendering performance.

Spherical harmonics have also been exploited by Sillion et al. [1991], Cabral et

ACM Transactions on Graphics, Vol. V, No. N, Month 20YY.



All-Frequency Relighting of Glossy Objects · 5

al. [1987] and Westin et al. [1992] as a compact representation for the BRDF and
global illumination solutions. As Ng et al. [2003] point out, a low-order SH ba-
sis is only accurate when approximating very low-frequency signals, and therefore
cannot reproduce high-frequency lighting and shadowing effects. Instead, they use
non-linear wavelet approximation to represent the lighting and transport vectors,
achieving all-frequency illumination and shadows at interactive rates. They demon-
strated the technique primarily for image relighting. For changing viewpoint, it was
limited to diffuse objects. In a recent paper, Ng et al. [2004] developed efficient
wavelet triple product integrals for all-frequency relighting. This new method is
accurate, but rendering requires a few seconds, and it is not clear how the system
can extend to include global illumination effects such as interreflections.

Recently Liu et al. [2004] and we [Wang et al. 2004] independently proposed a
new formulation of all-frequency PRT for relighting glossy BRDFs. The new ap-
proach combines separable BRDF approximation [Kautz and McCool 1999] with
Ng’s wavelet-based technique to produce all-frequency shadows and low-frequency
view-dependent effects. Specifically, we use a separable decomposition to approx-
imate glossy BRDFs with a few (K) low-order terms, each consisting of a purely
light-dependent part and a purely view-dependent part. For each vertex, we pre-
compute K transport vectors, corresponding to each BRDF term. To compress
the transport vectors, we use a non-linear wavelet approximation as in [Ng et al.
2003]. Liu et al. [2004] also experimented with data compression using clustered
principal component analysis (CPCA) [Sloan et al. 2003], exploiting spatial coher-
ence. At run-time, when lighting changes, we sample the environment map and
apply a wavelet transform to produce a light vector. The light vector is then mul-
tiplied with each of the K transport vectors per vertex to produce K colors, which
we call the light-dependent K-vector. When viewpoint changes, we use the view
direction at each vertex to index into all K BRDF view maps, forming a view-

dependent K-vector. Finally, the vertex color is computed as the dot product of
the view-dependent K-vector with the light-dependent K-vector.

A limitation of both papers is the assumption of direct illumination. In this paper
we will elaborate on developing the formulation to incorporate interreflections in
precomputation, without affecting the rendering performance.

2.2 BRDF Factorization

BRDF factorization is a dimensionality reduction technique that has been success-
fully applied to interactive rendering [Kautz and McCool 1999], importance sam-
pling [Lawrence et al. 2004], and precomputed radiance transfer [Liu et al. 2004;
Wang et al. 2004]. The factorization can be achieved using a separable decompo-
sition [Kautz and McCool 1999], homomorphic factorization [McCool et al. 2001]
or chained matrix factorization [Suykens et al. 2003]. They all reduce a 4D BRDF
to sums and products of several 2D functions, each stored as a 2D texture map
for access by graphics hardware during rendering. DeYoung and Fournier [1997;
1995] have examined properties of a BRDF that affect its separability. Rusinkiewicz
[1998] showed that proper reparametrization of a BRDF can improve its separability
remarkably.

The current mathematical framework of our technique (Section 3.1) requires a
BRDF parameterization in incident and view directions. To factorize, we typically

ACM Transactions on Graphics, Vol. V, No. N, Month 20YY.



6 · Rui Wang et al.

x Surface location

n Surface normal
ωi Incident direction
ωo View direction

V Visibility
fr Surface BRDF

Lo Outgoing radiance in the direct illumination pass

Li
o Bounced outgoing radiance in the i-th interreflection pass

L Distant environment lighting

Li Local lighting in the i-th interreflection pass
gk Light map of the k-th BRDF approximation term

hk View map of the k-th BRDF approximation term

Tk The k-th transport function (corresponding to the k-th BRDF term)

T i

k
The k-th bounced transport function in the i-th interreflection pass

T k The k-th complement transport function

x̃ or x̃(x, ω) The surface location that a ray originating from x hits in direction ω

Fig. 1. Notation used in this paper

apply a separable decomposition as in [Kautz and McCool 1999], which approxi-
mates a 4D BRDF fr as the sum of products of 2D functions gk’s and hk’s:

fr(ωi, ωo) ≈
K∑

k=1

gk(ωi)hk(ωo) (1)

where ωi is the incident direction, ωo is the view direction, and K is the number of
approximation terms. The accuracy of this approximation increases as more terms
are used. Although a highly glossy BRDF requires a significant number of terms,
a few low-order terms suffice for BRDFs with low-frequency specular components.
The factorization is typically computed using singular value decomposition (SVD).
In this case, the BRDF is first discretized by sampling the incident direction and
view direction separately, constructing a BRDF matrix M. Then an SVD is applied
on M, resulting in a left matrix U and a right matrix V, each consisting of K
column vectors. These column vectors correspond directly to gk’s and hk’s (see
Section 3.3 for detail). We call gk’s the BRDF light maps since each of them is a
2D texture map indexed only by the incident direction. Similarly, hk’s are called
the view maps since each of them is a 2D texture map indexed only by the view
direction. Instead of SVD, one can also apply non-negative matrix factorization
(NMF) [Lee and Seung 1999] similarly to the work by Lawrence et al. [2004]. NMF
produces strictly positive coefficients, which is desirable in certain situations.

3. ALGORITHMS

In this section, we describe algorithms for precomputing transport vectors using
separable BRDF decomposition and non-linear wavelet approximation. As in other
PRT work, we only consider distant illumination and ignore near-field illumination.
Figure 1 lists notation used in this paper.

ACM Transactions on Graphics, Vol. V, No. N, Month 20YY.



All-Frequency Relighting of Glossy Objects · 7

3.1 Direct Illumination

We first consider the rendering equation [Kajiya 1986] for direct illumination, which
describes outgoing radiance Lo at a surface location x in view direction ωo as:

Lo(x, ωo) =

∫

Ω

L(ωi) fr(x, ωi, ωo)V (x, ωi) (n · ωi) dωi (2)

where L is source lighting, ωi is incident direction, fr is surface BRDF, n is surface
normal, and V is visibility. The domain of integration Ω is the sphere of incoming
directions in the global coordinate system, and is parameterized the same way as L.
For simplicity, we only consider spatially uniform BRDF. Since the precomputation
occurs per vertex, it is straightforward to handle spatially varying BRDFs that are
linear combinations of several basis BRDFs or modulated by texture maps. Using
separable BRDF decomposition (Eq 1), we approximate Lo(x, ωo) as:

Lo(x, ωo) ≈

∫

Ω

L(ωi)

(
K∑

k=1

gk(ωi)hk(ωo)

)
V (x, ωi) (n · ωi) dωi

=
K∑

k=1

(
hk(ωo)

∫

Ω

L(ωi) gk(ωi)V (x, ωi) (n · ωi) dωi

)

For each BRDF term, we define its associated transport function as:

Tk(x, ωi) = gk(ωi)V (x, ωi) (n · ωi) (3)

which can be precomputed and allow us to further express Lo as:

Lo(x, ωo) =

K∑

k=1

(
hk(ωo)

∫

Ω

L(ωi)Tk(x, ωi) dωi

)
(4)

Note that due to the BRDF factorization, the integrand is no longer dependent on
ωo. Using numerical cubature we evaluate the integral as:

Lo(x, ωo) =
K∑

k=1


hk(ωo)

∑

j

L(ωj)Tk(x, ωj)




where ωj is the discretized incident direction. If we fix a surface location x and its
view direction ωo, the view-dependent color is:

Lo =
K∑

k=1


hk(ωo)

∑

j

L(ωj)Tk(ωj)




which we put in compact matrix notation as:

Lo = h · (T × L) (5)

Here L is the light vector, × denotes a matrix-vector multiplication, and · denotes
a vector inner product. h is called the view-dependent K-vector, which is produced
by texture lookups of ωo into all BRDF view maps. T is the precomputed trans-
port matrix, the rows of which are the transport functions defined in Eq 3. The
multiplication of T with L produces a K-vector which we call the light-dependent

ACM Transactions on Graphics, Vol. V, No. N, Month 20YY.



8 · Rui Wang et al.

K-vector and use symbol g to denote. Now the view-dependent color is simply the
dot product of the two K-vectors: Lo = h · g

Notice that Eq 5 still holds when L and the row vectors of T are expressed
in any orthonormal basis, such as spherical harmonics or wavelets. In fact, an
approximation using such orthonormal bases is very important for two reasons:
first, they provide a compact representation to dramatically reduce the storage size
of precomputed transport vectors; second, they allow for fast rendering by reducing
the computation of the lighting integral to a low-dimensional vector inner product.

As Ng et al. [2003] point out, spherical harmonics basis localizes poorly in the
spatial domain, and hence is only accurate for approximating very low-frequency
lighting, such as large area sources. On the contrary, point set basis localizes poorly
in the frequency domain, and hence is only accurate for approximating very high-
frequency lighting such as small area sources. Instead, wavelet basis localizes well in
both frequency and spatial domains, and therefore is very efficient at approximating
lighting over a broad range of frequencies. They demonstrated that using non-linear
wavelet approximation preserves all-frequency illumination effects, such as both
hard and soft shadows. For these reasons, we use non-linear wavelet approximation
to compress our precomputed datasets.

Eq 5 is similar to the matrix notation in [Ng et al. 2003]. The difference is that
our transport functions are modulated by the BRDF light maps, and rendering is
modulated by the BRDF view maps. Essentially we can think of the new formula-
tion as a projection of the full 6D transport function, defined as the triple product
of fr, V and (n ·ωi), onto the low-order BRDF bases, which comes from the BRDF
factorization. In this way, we have reduced the sampling rate in the view to K
terms and effectively constrained the precomputed datasets to a manageable size
for rendering. By bandlimiting the frequency content in the view, however, we are
limited to low-frequency specularities and smoothly varying view-dependent effects.
On the other hand, because we represent the lighting using non-linear wavelet ap-
proximation, our renderings preserve intricate hard and soft shadows, which are
very difficult to achieve using other approaches.

3.2 Global Illumination

Now we consider including global illumination effects into precomputation. We use
a multi-pass gathering approach that is a straightforward adaptation of the Jacobi
iterations well known in radiosity. We call the direct illumination step in Section 3.1
the 0th pass, which computes a set of direct transport vectors. In classic radiosity,
global illumination is computed one step at a time: the initial step (the 0th pass)
computes outgoing radiance for every surface location due to direct illumination;
each following pass computes bounced outgoing radiance for every surface location
by gathering reflected radiance from all other surface locations. Our method is
different in that for every surface location, we gather transport vectors, instead of
radiance values, from all other surface locations. The gathering process produces
a new set of transport vectors, which we call the bounced transport vectors. In the
following we derive the transport functions for the first interreflection bounce. The
superscripts in all symbols denote the iteration number.

Illumination in the first bounce comes from the surface outgoing radiance after
the direct illumination pass. Now lighting depends on surface location x and cannot

ACM Transactions on Graphics, Vol. V, No. N, Month 20YY.



All-Frequency Relighting of Glossy Objects · 9

�x

x

ω
ω− Fig. 2. An example of L1(x, ω) = Lo(x̃,−ω).

be assumed distant any more. The outgoing radiance of the first bound is:

L1
o(x, ωo) =

∫

Ω

L1(x, ω) fr(x, ω, ωo) (1 − V (x, ω)) (n · ω) dω

where L1 is the local lighting observed by surface location x. Similar to the direction
illumination case, we substitute Eq 1 into the above equation and define a transport
function associated with each BRDF term as:

T k(x, ω) = gk(ω) (1 − V (x, ω)) (n · ω) (6)

Note that this definition differs with Eq 3 only by a flip in the visibility term, thus
we call it the complement transport function. Now we can express L1

o as:

L1
o(x, ωo) =

K∑

k=1

(
hk(ωo)

∫

Ω

L1(x, ω)T k(x, ω) dω

)
(7)

L1 is in fact the outgoing radiance Lo via the following relation:

L1(x, ω) = Lo(x̃,−ω)

Figure 2 shows the relation. Here x̃ = x̃(x, ω) refers to the surface location that a
ray originating from x intersects in direction ω. Intuitively, it is the closest point
that x sees in direction ω. Given this, the integral in Eq 7 becomes

∫

Ω

Lo(x̃,−ω)T k(x, ω) dω

We then use Eq 4 to substitute Lo in the integral and rearrange the terms:

∫

Ω

L(ωi)



∫

Ω

K̃∑

λ=1

hλ(x̃,−ω)Tλ(x̃, ωi)T k(x, ω) dω


 dωi

Notice that a model can contain several BRDFs and each of them may have a
different number of approximation terms, therefore the BRDF light maps and view
maps both depend on the surface location, as we explicitly indicate above. Here
K̃ = K(x̃) denotes the number of approximation terms used for the BRDF at x̃.
The inner integral (inside the big parentheses) produces a function that depends
on ωi, and we define it as the bounced transport function

T 1
k (x, ωi) =

∫

Ω

K̃∑

λ=1

hλ(x̃,−ω)Tλ(x̃, ωi)T k(x, ω) dω (8)

ACM Transactions on Graphics, Vol. V, No. N, Month 20YY.



10 · Rui Wang et al.

Intuitively, T 1
k carries bounced illumination transport that is parameterized on the

lighting, and can be explained as a gathering of direct transport functions Tλ over
all points observed by x. This gathering is valid precisely because illumination is
a linear process. Now with T 1

k we can rewrite Eq 7 by integrating over the distant
source lighting L (instead of local lighting L1):

L1
o(x, ωo) =

K∑

k=1

(
hk(ωo)

∫

Ω

L(ωi)T 1
k (x, ωi) dωi

)
(9)

Obviously this rendering equation has the same form as the direct illumination
case (Eq 4), therefore the rendering algorithm remains unmodified. Using the same
derivation, we obtain a recursive formula for the bounced transport functions in
further interreflection passes:

T i+1
k (x, ωi) =

∫

Ω

K̃∑

λ=1

hλ(x̃,−ω)T i
λ(x̃, ωi)T k(x, ω) dω

Finally, the total outgoing radiance is the sum of all bounced radiance values:

Lglobal
o (x, ωo) = Lo(x, ωo) + L1

o(x, ωo) + L2
o(x, ωo) + ...

and correspondingly, the global illumination transport function is:

T global
k (x, ωi) = Tk(x, ωi) + T 1

k (x, ωi) + T 2
k (x, ωi) + ...

The rendering equation again has the same form as both Eq 4 and Eq 9:

Lglobal
o (x, ωo) =

K∑

k=1

(
hk(ωo)

∫

Ω

L(ωi)T global
k (x, ωi) dωi

)

Note that the global illumination step simulates both diffuse and glossy interreflec-
tions consistently. In order to demonstrate distant lighting effects, we have con-
structed relatively open test scenes for all our examples, which means most regions
are illuminated by rather short illumination paths. In this case, the energy redis-
tributed at each bounce is decreasing rapidly, therefore computing a few bounces
(1 ∼ 2) usually suffices for visually pleasing results.

In low-frequency PRT [Sloan et al. 2002; Lehtinen and Kautz 2003], precomputing
interreflections involves building a per-vertex incident transfer matrix that simulates
the linear influence of source lighting to transferred incident radiance. The transfer
matrix has properly encoded the bounced illumination transport upon arriving at
a vertex; it is then convolved with the BRDF at that vertex, either on the fly or
as a preprocessing, to produce the exiting radiance values. Since only the first
25 spherical harmonics bases are used for approximation, their transfer matrix is
still relatively compact (up to 25 × 25). Applying this approach to all-frequency
PRT, however, is impractical as the high dimensional sampling space would require
building a transfer matrix that has a full size of 24, 576× 24, 576. Even after using
aggressive wavelet approximation in both dimensions (in fact, the data compressed
this way would be very awkward and costly to render with), the matrix is still
likely to be 2 ∼ 3 orders of magnitude bigger than using spherical harmonics.
The problem is that such a matrix transfers source radiance to incident radiance

ACM Transactions on Graphics, Vol. V, No. N, Month 20YY.



All-Frequency Relighting of Glossy Objects · 11

without bandlimiting the frequency content in the output, therefore it encounters
the problem of dense sampling in the 6D high dimensional space as discussed earlier.

Our approach essentially reduces sample rate by choosing a low-order output
basis (from the BRDF factorization) for the transport matrix, such that when
computing bounced illumination transport we only deal with signals of a much
lower dimension. This means our interreflection bounces only carry low-frequency
transport energy, which is reasonably accurate except for very glossy surfaces. On
the other hand, we use non-linear wavelets as a different basis for the input, which
efficiently preserves high-frequency content in the visibility as well as the lighting,
allowing us to render sharp shadows on the fly.

3.3 Separable BRDF Approximation

3.3.1 Factorization. We use the SVD technique to factorize BRDFs [Kautz and
McCool 1999]. We sample the BRDF and construct a BRDF matrix M, the columns
and rows of which are sampled incident directions and view directions respectively.
We process the R, G, and B color channels separately. Applying SVD on M gives
M = U × S × V′ where ′ denotes a transpose. It can be written conveniently as:

M =

K∑

k=1

σk uk v′

k

where σk denotes the singular values and are the diagonal elements of S; uk and
vk denote the column vectors of U and V. We factor σk and define

√
σk uk and

√
σk vk to be the BRDF light maps and view maps respectively. Since uk and vk

are sets of orthonormal vectors, truncating the sum with the largest K singular
values results in an optimal approximation of M in the Frobenius norm.

We usually apply equal sampling resolution on both incident and view directions.
In this case, due to Helmholtz reciprocity of a physical BRDF, M is real symmetric.
According to the Spectral Theorem, M is diagonalizable such that M = Q×D×Q′.
The diagonal elements of D are eigenvalues of M, and the column vectors of Q

are the corresponding normalized eigenvectors. They relate to the SVD of M by:
U = V = Q, S = D2. This implies that the k-th light map and view map will be
the same if the k-th eigenvalue is positive; and they will differ only by a sign if the
eigenvalue is negative.

Obviously a diffuse BRDF can be trivially factored into a single (K = 1) con-
stant term, as the corresponding matrix M has only one non-zero singular value.
In some cases, a single term approximation is also able to reproduce a reasonable
amount of specularity, and can be computed efficiently using normalized decompo-
sition [Kautz and McCool 1999]. For highly specular BRDFs, a significant number
of approximation terms are necessary, since many singular values tend to become
equally large as M approaches a diagonal matrix. With a few low-order terms,
however, the approximation is accurate for low-frequency specularities. We have
experimented with K = 4 for all our BRDFs and found this to be visually satisfac-
tory for materials with moderate glossiness. In Section 5.2, we discuss the BRDF
approximation error by varying the number K.

3.3.2 Parametrization. As we have shown in Section 3.1, our PRT formulation
requires us to parameterize the BRDF in incident and view directions. Highly spec-

ACM Transactions on Graphics, Vol. V, No. N, Month 20YY.



12 · Rui Wang et al.

ω ω

(a) (b)

Fig. 3. (a) shows the projection of ω onto a uniform grid texture map; (b) shows the projection
of ω with polar coordinates and the corresponding unwrapped texture map.

ular BRDFs are better aproximated by other parameterizations (e.g. the half-angle
parametrization) [Rusinkiewicz 1998], but unfortunately we can not take advantage
of them in our current framework. We store light maps and view maps from the
separated BRDF as 2D textures. To access these textures, we use a parametriza-
tion that projects a hemispherical direction ω onto a uniform grid texture map as
shown in Figure 3(a):

x = (ω · s + 1)/2 y = (ω · t + 1)/2 (10)

where x and y are texture coordinates; s and t are tangent and binormal vectors
of the local coordinate system, which are derived from the normal n. We use
stereographic projection of the unit sphere to parameterize the space of normals
and derive a formula for s and t as:

s = normalize
[
(ny + 1)2 + n2

z − n2
x, −2 (ny + 1)nx, −2nx nz

]
t = n × s

where n = [nx, ny, nz] is a given normal. We favor this formula because commonly s

and t are generated with two discontinuities (such as at n = [0, 1, 0] and [0,−1, 0]);
while this formula produces only one discontinuity at n = [0,−1, 0].

Although we typically use the uniform grid projection method, we found that
for some BRDFs such as the Ashikhmin-Shirley anisotropic BRDF [Ashikhmin
and Shirley 2000], a significantly better single term approximation is achieved by
projection with the polar coordinates, as shown in Figure 3(b). The formula is:

x = tan−1(ω · s, ω · t) y =
√

1 − ω · n (11)

4. IMPLEMENTATION

In this section, we describe our implementation details and discuss ways to accel-
erate precomputation and rendering using modern graphics hardware.

To construct the BRDF matrix, we sample both incident and view directions on
a unit disk embedded in a 2D texture map of 48 × 48 resolution. The memory
required to store the tabulated BRDF is approximately 37.5 MB. Sampling at a
higher resolution is possible, but requires more memory and computation time,
while providing little improvement in accuracy (Section 5.2). The cosine term in

ACM Transactions on Graphics, Vol. V, No. N, Month 20YY.



All-Frequency Relighting of Glossy Objects · 13

the transport function (Eq 3) could be built into the definition of BRDF, as done by
Liu et al. [2004]. This may result in a better approximation due to the attenuation
of high BRDF values prior to factorization. Our implementation leaves the cosine
term out, which enables us to preserve the symmetry of the BRDF.

4.1 Precomputation – Direct Illumination

In the initial pass we precompute K direct transport vectors Tk per vertex, forming
a K-row transport matrix. Distant lighting is parameterized using a 6 × 64 × 64
cubical environment map. Incident and view directions are expressed in the same
global coordinate system as the lighting. For proper anti-aliasing, we start by
rasterizing a higher resolution 6 × 128 × 128 visibility cubemap at each vertex of
the original scene model. A simplified scene model is used for visibility sampling
in order to accelerate rasterization speed. We then use the direction vector of each
cubemap pixel to index into the BRDF light maps, and evaluate the transport
functions according to Eq 3. The result is next 2 × 2 downsampled to 6 × 64 × 64
resolution.

4.1.1 Wavelet Transform. We project each cubemap face (64 × 64) onto a 2D
Haar wavelet basis. In the case of a K-term BRDF approximation, this requires
6 × K wavelet transforms. For non-linear approximation, we gather the wavelet
coefficients on all 6 cubefaces and apply a linear-time algorithm to select the first Nl

coefficients according to their magnitudes. Due to the orthonormality of the basis,
keeping the largest coefficients (in magnitude) results in an optimal approximation
in L2-norm. The K transport vectors at each vertex are approximated individually.
In our experiments we found Nl = 128 (0.52% of the uncompressed data) achieves
reasonable rendering fidelity. In Section 5.2 we illustrate the wavelet approximation
error by varying Nl.

4.1.2 Quantization and Storage. To further reduce the precomputed data size
and improve rendering performance, we uniformly quantize the wavelet coefficients.
The R, G and B values are each quantized to an 8-bit signed integer. Since the
wavelet approximation is non-linear, we store coefficients together with their indices,
which requires an additional 15 bits to represent. For data storage efficiency, we
partition the range of the index (0 ∼ 24, 576) into 96 blocks, each containing 256
continuous index values. Essentially we are splitting the index into two parts: one
8-bit block index and one 8-bit block offset. The block offset is packed together with
the three color channels into a 4-byte field; and the 8-bit block indices are stored
separately. We have also experimented with using more bits for quantization to
provide higher accuracy. However, we found the 8-bit quantization scheme is ideal
for data formats currently available on graphics hardware, and thus significantly
accelerates our GPU implementation of the rendering algorithm.

4.1.3 Hardware Acceleration. The precomputation of direct illumination is well
suited for acceleration on graphics hardware. To do this, we render the visibility
cubemap into a single channel, single byte OpenGL pbuffer, and bind it as a texture
for a shader that computes the transfer function based on the visibility and factored
BRDF terms. This transfer function is rendered into a 16-bit floating point render
target, and is bound again to do the 2 × 2 downsampling on the card, which we

ACM Transactions on Graphics, Vol. V, No. N, Month 20YY.



14 · Rui Wang et al.

accelerate by directly taking use of 16-bit floating point hardware interpolation. We
then only read data off of the card in 6×64×64 blocks of memory, since we compute
all six cubefaces for each vertex at once. To reduce memory bandwidth cost for
data transfer between CPU and GPU, we store the simplified visibility model (for
rasterization) on card as a vertex buffer object. The cubemap direction normals and
factored BRDF terms are stored as 16-bit floating point textures. With the GPU
implementation, we have achieved approximately 2× speedup in precomputation
time over an optimized CPU implementation.

4.2 Precomputation – Global Illumination

Interreflections are computed using a multi-pass method. Each interreflection pass
gathers the transport vectors computed in the previous pass to produce a new
set of transport vectors carrying bounced illumination. Since this step involves
managing a big dataset, our implementation reflects several decisions in an effort
to reduce memory consumption as well as precomputation time. First, transport
vectors from the previous pass must be loaded entirely in memory, because they
are accessed in a random pattern by the gathering process. In order to reduce
memory usage, we decided to keep all transport data in their compressed and
quantized form in memory, which incurs a slight overhead by decoding on the
fly. Second, to prevent the intermediate data size from expanding, we decided to
truncate the wavelet coefficients after each pass. Repeating this process, however,
can lead to accumulated non-linear errors due to the early truncation of certain
high-frequency coefficients. We could choose to keep an increasingly higher number
of coefficients for each pass, but this would be a tradeoff between memory usage
and computation accuracy. Third, because transport vectors represent radiance
values as linearly influenced by the lighting (which is unknown at precomputation
step), we cannot determine which surface location has the largest unshot radiance
energy. This means we are not able to take advantage of more efficient techniques
such as progressive radiosity. Finally, the gathering process does not lend itself to
current graphics hardware, and we resort to a CPU implementation.

For numerical integration, the gathering process uses an approach similar to the
hemicube approximation for computing form factors in radiosity algorithms. But
instead of using a locally oriented hemicube, we construct a cubemap in the global
coordinate system centered at each vertex. This helps reduce sampling artifacts
due to spatial variance. We start by assigning a unique false color to each vertex
in the scene model, which allows us to correctly identify any vertex by reading its
color. We then rasterize a low resolution 6 × 32 × 32 cubemap centered at each
vertex x, using the false colored scene model and OpenGL flat shading. Notice that
this cubemap resolution is independent of the lighting resolution (6× 64× 64), and
can vary according to the designed accuracy. Using a very low cubemap resolution,
however, could cause aliasing (banding) artifacts as shown in Figure 11. In practice,
we do not observe any obvious artifacts by using the suggested resolution (6 ×
32× 32). This low resolution suffices because our interreflection computations only
carry low-frequency transport energy due to the bandlimiting effects of low-order
BRDF approximation. Using a higher resolution will increase precomputation time
considerably but provide little improvements in quality. Alternatively, one may
apply Monte Carlo techniques for numerical simulation of bounce illumination;

ACM Transactions on Graphics, Vol. V, No. N, Month 20YY.



All-Frequency Relighting of Glossy Objects · 15

however, we found the suggested method easy to implement and visually convincing.
In the next step, we compute bounced transport vectors according to Eq 8, where

ω is simply the direction vector of each cubemap pixel, and x̃ is indicated by the
color of that pixel. The transport vectors of x̃ from the previous pass are retrieved
from memory, scaled by the BRDF view map values and the complement transport
function values (Eq 8), and finally accumulated to a buffer containing the bounced
transport vectors of x.

4.3 Rendering

At run-time, we sample the environment map dynamically onto a 6× 64× 64 cube-
map, perform a fast 2D Haar wavelet transform and then uniformly quantize the
wavelet coefficients to signed 16-bit intergers. Quantized coefficients with absolute
value below a certain threshold are discarded. In order to reduce temporal artifacts
(flickering) when rotating the light, we choose to keep many more lighting coeffi-
cients than we keep transport vector coefficients. As a result, our rendering speed
depends primarily on the size of precomputed data and only varies slightly as we
apply different lighting environments.

To relight the scene, we perform a multiplication of the sparse transport matrix
with the sparse light vector, and produce the light-dependent K-vector for each
vertex. The view direction at each vertex is used to index into BRDF view maps and
produce the view-dependent K-vector. Vertex color is computed as the dot product
of the two K-vectors. Notice that the light-dependent K-vector is recomputed every
time the lighting changes, and the computation is more expensive than when only
the viewpoint is changing.

4.3.1 Hardware Acceleration. We have accelerated the entire rendering pipeline
on modern graphics hardware. We take advantages of several features available in
the NVIDIA GeForce 6 series graphics cards, including 64-bit floating point texture
filtering and blending, non-power of two textures, vertex/pixel buffer objects, and
vertex texture fetch.

As discussed in Section 4.1.2, we use the 8-bit per channel quantization scheme
for precomputed transport vectors and upload them as unsigned byte textures to
the graphics card. Each transport vector contains 128 elements (non-linear wavelet
coefficients) laid out as a 16 × 8 block. Their indices are also stored on card, with
the block offsets stored as the fourth channel of the transport vector texture, and
the block indices as a separate single channel floating-point texture. When lighting
changes, we sample and wavelet transform the environment map dynamically on the
CPU. The transformed coefficients, which forms the light vector, are laid out as a
96×256 floating point texture and uploaded to GPU with 16 bits per color channel.
Unlike the CPU implementation, we do not truncate the lighting coefficients, thus
only the transport vectors are sparse while the light vector is dense.

Figure 4 shows the computation diagram of our GPU-based rendering algorithm.
After the lighting coefficients are uploaded, we draw a quadrilateral the size of our
domain (P in the diagram). In a fragment shader, we perform the per-element
multiplication portion of the inner product between the transport vectors and the
light vector. To do so, the block index and offset of each element are combined
as a 2D texture coordinate to access the proper element in the lighting texture for

ACM Transactions on Graphics, Vol. V, No. N, Month 20YY.



16 · Rui Wang et al.

L
1 6 x8  B l o c k 1 6 x8  B l o c k

9 6 x2 5 6  Te xt u r e  M a p

T

⊗

P

4x4    D o w n s a m p l e

4x2  B l o c k

4x2
D o w n s a m p l e

g
Wavelet Coefficients

I n d i c e s  o f T

Fig. 4. Computation diagram for our GPU-based rendering algorithm. The transport vectors T,
their indices, and the intermediate computation buffer P are stored in texture memory on card,
which are partitioned into blocks of size 16 × 8 (indicated by the dotted line). Each block stores
the sparse transport vector (containing 128 elements) for a single vertex. The inner product of
the light vector L and the transport vectors T is calculated by first performing the per-element
multiplication and storing the results in P. This involves one step of texture indirection using the

indices of the transport vectors. P is then downsampled twice to sum up all the 128 elements in

a block and produce the final result g.

multiplication. The results are rendered into an intermediate computation buffer
P. We then repeatedly downsample this buffer taking use of hardware support
for bilinear interpolation, and accumulate P into one final texture which holds the
light-dependent color g for each vertex.

To fully exploit the texture cache, we choose the dimension of our domain to
be as square as possible based on the block size (16 × 8) and the total number of
vertices. As shown in the diagram, the downsampling of P is performed in two
passes, first with a 4×4 filter, then with a 4×2 filter. This two-pass algorithm was
chosen to match our current graphics hardware, and is proved to be faster than one
pass by our experiments. Finally the result g is to be bound as either a texture or
a vertex array for view-dependent rendering. Tradeoffs between these two options
will be explained in Section 5.3.

When the viewpoint changes, we calculate the dot product of the light-dependent
K-vector and the view-dependent K-vector in a fragment shader to produce a per-
pixel color. To do so, we program a vertex shader to extract the light-dependent
K-vector from a texture or a vertex attribute, depending on whether g is bound as
a texture or a vertex array. The vertex shader also computes the view direction for
each vertex, which is later accessed by the fragment shader to index into all BRDF
view maps and extract the view-dependent K-vector. Finally the pixel color is
computed by a multiplication of the two K-vectors.

The indexing of the view direction into BRDF textures is computed according to
Eq 10 (see also Figure 3(a)). Currently our GPU implementation is limited to this

ACM Transactions on Graphics, Vol. V, No. N, Month 20YY.



All-Frequency Relighting of Glossy Objects · 17

Table I. Precomputation profiles for our test cases. Each column lists the following

in order: the number of vertices and triangles in each model; the number of vertices

in the diffuse floor and the visibility model; 1-term and 4-term precomputation time

and storage size for the direct illumination pass, and for one bounce interreflection

pass (storage size generally remains the same).

Bird Bunny Head Buddha Lucy

Number of vertices 25 K 36 K 49 K 56 K 102 K

Number of triangles 50 K 70 K 98 K 113 K 203 K

Size of floor 31 K 31 K 31 K 31 K 31 K
Size of visibility model 7.7 K 7.6 K 8.3 K 20 K 30K

Direct 1-term pre. time 5.3 min 5.6 min 7.7 min 11 min 20 min

Direct 4-term pre. time 11 min 14 min 20 min 24 min 44 min

Direct 1-term size 35 MB 36 MB 50 MB 54 MB 83 MB

Direct 4-term size 82 MB 100 MB 142 MB 160 MB 273 MB

Bounce 1-term pre. time 20 min 22 min 23 min 35 min 56 min

Bounce 4-term pre. time 39 min 46 min 51 min 109 min 122 min

Table II. Rendering frame rates (GPU/CPU) for changing viewpoint and changing
light with 1-term and 4-term BRDF approximations. These experiments were done
using the St. Peter’s Basilica light probe image. Due to limitations imposed by our

hardware platform, we were not able to complete some of the tests on the GPU.

Bird Bunny Head Buddha Lucy

1-term view 230/79 fps 226/79 fps 255/56 fps 210/47 fps 173/35 fps
4-term view 123/67 fps 97/62 fps 160/46 fps 90/38 fps 101/26 fps

1-term light 31/13 fps 31/12 fps 25/10 fps 7.6/8.7 fps –/5.9 fps

4-term light –/5.8 fps –/4.8 fps –/3.6 fps –/2.9 fps –/1.8 fps

uniform grid projection method, because using the polar coordinates method will
result in some triangles whose texture coordinates cross the periodic edge, causing
texture interpolation artifacts. In Section 6, we explain a possible implementation
of the polar coordinates method given the proposed future hardware specification.

5. RESULTS AND DISCUSSION

We present results using the following BRDFs:

—A Phong BRDF with a red diffuse color and s = 50 specular exponent

—Ashikhmin-Shirley (AS) anisotropic BRDF [Ashikhmin and Shirley 2000] with
the following parameters: kd = 0.5, ks = 0.75, nu = 10, nv = 100

—A clay and a dark skin BRDF, using the Lafortune model [Lafortune et al. 1997]

Figure 5 shows the approximation results for the selected BRDFs. In each image
we show the light map textures of the first 8 BRDF terms, along with the Bunny
model rendered using the first 4 terms. The view map textures are not shown, as
they share the same absolute values with the light map textures due to the sym-
metry of our BRDF matrix. We also plot the decay of cosine-weighted RMS errors
as we increase the number of BRDF terms as well as the texture map resolution.
These examples demonstrate that a 4-term approximation is visually adequate for
materials with moderate specularities.

Figure 6 shows models rendered with diffuse and glossy BRDFs, and compares the
rendering qualities of direct illumination, 1-bounce and 2-bounce interreflections.
Precomputation time for each interreflection bounce is approximately the same,

ACM Transactions on Graphics, Vol. V, No. N, Month 20YY.



18 · Rui Wang et al.

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

1 2 4 8 16 32 64 128
Number of BRDF Terms

R
M

S 
Er

ro
r

16x16
24x24
32x32
48x48

Phong

0

0.05

0.1

0.15

0.2

0.25

0.3

1 2 4 8 16 32 64 128
Number of BRDF Terms

R
M

S 
Er

ro
r

16x16
24x24
32x32
48x48

Anisotropic

0

0.005

0.01

0.015

0.02

0.025

0.03

1 2 4 8 16 32 64 128
Number of BRDF Terms

R
M

S 
Er

ro
r

16x16
24x24
32x32
48x48

Clay

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

1 2 4 8 16 32 64 128
Number of BRDF Terms

R
M

S 
Er

ro
r

16x16
24x24
32x32
48x48

Drak Skin

Fig. 5. BRDF approximation results. Each image on the left shows the light map textures of the

first 8 BRDF terms, along with the Bunny model rendered with the first 4 terms using different

environment lighting. Colors in the textures are displayed in absolute values. The graphs on the

right plot the decay of cosine-weighted RMS errors as we increase the number of BRDF terms,

with each curve denoting a different texture map resolution.

ACM Transactions on Graphics, Vol. V, No. N, Month 20YY.



All-Frequency Relighting of Glossy Objects · 19

and rendering performance is insensitive to the additional precomputation. Note
that computing one bounce already provides a good approximation to the global
illumination solution. Further bounces beyond 2 provide little change overall. The
clear definition of shadows on the diffuse floor demonstrates the ability of our
technique to handle all-frequency lighting effects. In Figure 7 we provide two other
examples of enhanced image realism by considering diffuse to glossy interreflections
and vice versa. The exhibited effects, such as color bleeding and caustics, are clearly
not present in the direct illumination rendering.

5.1 Performance

Our test results were acquired on an Intel Pentium 4 2.4 GHz computer with 1 GB
memory and an NVIDIA GeForce 6800 graphics card. We compile our programs
using the Intel Compiler 8.0, and compile our shaders using Cg 1.3 and NV40 pro-
files. We use the OpenGL vertex buffer objects (VBO) extension to reduce memory
bandwidth cost for data transfer between the CPU and GPU. To demonstrate the
ability of our technique to handle all-frequency shadows, we render a diffuse floor
under each model; the reported precomputation time and rendering performance
include the diffuse floor.

Table I summarizes the precomputation profiles for a number of models we ex-
perimented. All models are precomputed with up to K = 4 BRDF approximation
terms. The direct illumination pass is computed with our GPU implementation,
and the interreflection pass is computed on CPU. Since visibility sampling is expen-
sive, we use a simplified scene model for rasterization. This approximation has no
visible effect on any of our test scenes. Our non-linear wavelet approximation keeps
up to Nl = 128 largest wavelet coefficients per transport vector. For a 4-term BRDF
approximation and a 100,000-vertex model, the total storage size is approximately
240 MB with the proposed 8-bit quantization scheme. This is roughly 30% of the
data size without quantization. By using graphics hardware, we have achieved 2
times speed up in precomputation time compared to a CPU implementation which
uses the graphics hardware only for visibility sampling.

The precomputation for interreflections requires us to use the original model,
instead of a simplified model, for visibility sampling. This is because the gathering
process has to correctly identify the contributing vertices from the original model.
We currently do not have a GPU implementation for this step. Precomputation
with our CPU implementation is considerably slower than the direct illumination
pass, and each interreflection pass takes approximately the same amount of time.
After each pass the gathered non-linear transport vectors are truncated again to
Nl = 128 largest wavelet coefficients, therefore the storage size does not grow with
the additional computation, and the rendering performance remains unmodified.

Table II summarizes the rendering frames rates. Due to texture memory limits,
we cannot currently perform lighting updates on the GPU for large models or for
a 4-term BRDF approximation. This is primarily because we have to maintain an
expensive intermediate computation buffer P (see Figure 4) due to the lack of an
accumulation mechanism on GPU. However, for smaller models, the GPU imple-
mentation has shown considerable performance gain over a reasonably optimized
CPU implementation.

ACM Transactions on Graphics, Vol. V, No. N, Month 20YY.



20 · Rui Wang et al.

(a) direct illumination (b) 1-bounce interreflection (c) 2-bounce interreflections

Fig. 6. Simulation of interreflection effects. This example shows the Bird model rendered with
a diffuse and a Phong BRDF, and the Bunny model rendered with a diffuse BRDF. Note the

clear definition of shadows on the diffuse floor and the considerable added realism brought by

adding interreflections. Rendering speed is insensitive to the inclusion of interreflections. Even

one bounce does well at approximating the global illumination solution. Further bounces beyond

2 provide little change overall.

5.2 Accuracy

5.2.1 BRDF Approximation. To analyze the accuracy of our BRDF approxi-
mation, we chose 100,000 uniformly distributed samples over both the incident and
view directions and evaluate the approximated BRDF values on these directions.
We compute the RMS error of these values with the analytic BRDF, weighted by
the incident cosine term. In Figure 5, we plot the cosine-weighted RMS error as a
function of the number of approximation terms. Each curve represents a different

ACM Transactions on Graphics, Vol. V, No. N, Month 20YY.



All-Frequency Relighting of Glossy Objects · 21

(a) direct illumination (b) 1-bounce interreflection

Fig. 7. The top row shows the Buddha model rendered with the AS anisotropic BRDF. Note the
color bleeding from the red diffuse floor to the glossy model. The bottom row shows the head

model rendered with the same BRDF. Note the caustics on the floor due to the reflection of lights

from curved glossy surfaces. These effects are not present in the direct illumination renderings.

BRDF texture map resolution. The non-zero asymptotic error is due to bilinear in-
terpolation of finite resolution texture maps. Notice that in all examples, the error
curve of 48× 48 texture resolution appears to converge. Sampling at a higher reso-
lution requires considerably more memory and computation time, while providing
little improvement in accuracy. Therefore we choose 48 × 48 resolution.

It is well-known that RMS error of the BRDF does not directly relate to perceived
error in rendering. In Figure 8 we show the Buddha model rendered with different
number of terms for the AS anisotropic BRDF. The model is illuminated by a single
colored light and we ignore shadowing. The reference image is rendered with the
analytic BRDF for comparison. From the fidelity of specular highlights, we conclude
that a 4-term approximation is visually adequate. As we increase the number

ACM Transactions on Graphics, Vol. V, No. N, Month 20YY.



22 · Rui Wang et al.

K = 1 K = 2 K = 4

K = 16 K = 64 Reference Image

Fig. 8. The Buddha model rendered with the AS anisotropic BRDF and illuminated by a single

colored light. We compare fidelity of the specular highlights by increasing the number of BRDF

approximation terms K. The reference image is rendered with the analytic BRDF. We typically
use K = 4, which is qualitatively sufficient. Some observable errors include its slightly darker

appearance compared with the reference and noticeable ringing effects on the base of the model.

of terms, the precomputed data size grows linearly and rendering performance
decreases linearly. Therefore we choose K = 4, which appears to be a good tradeoff
between visual accuracy and rendering speed.

When accuracy is not the primary concern, we have found that a single term
approximation can often provide reasonable specularities. Figure 9 compares the
Lucy model rendered with a diffuse gray BRDF, a 1-term approximation of the
AS anisotropic BRDF using projection with polar coordinates (Eq 11), and 4-term
approximation of the same BRDF. Note the specular highlights present in the 1-
term approximation as compared to the diffuse BRDF rendering.

ACM Transactions on Graphics, Vol. V, No. N, Month 20YY.



All-Frequency Relighting of Glossy Objects · 23

Fig. 9. This example shows the Lucy model rendered with a gray diffuse BRDF, a 1-term ap-
proximation of the AS anisotropic BRDF using projection with polar coordinates (Eq 11), and a
4-term approximation. Note that the 1-term approximation has captured reasonable specularities.

5.2.2 Non-linear Wavelet Approximation. Figure 10 shows several renderings of
the Bunny model with high-frequency shadows on the floor as we vary the number
of wavelet approximation terms (Nl). We believe that Nl = 128 provides visually
satisfactory fidelity of shadows. In the CPU rendering algorithm, we truncate
lighting wavelet coefficients, which gives slightly better frame rates. However, our
rendering performance and quality is insensitive to the approximation of lighting,
since we keep many more wavelet terms for the lighting than for the transport
functions. A good reference for approximation of the lighting using non-linear
wavelets can be found in [Ng et al. 2003]. Our GPU implementation does not
truncate lighting coefficients.

5.2.3 Interreflections. Since we use a cubemap to sample interreflections during
the gathering process, its resolution has to be sufficient to avoid aliasing, manifested
as banding artifacts in the rendering. Figure 11 shows the Bird model rendered with
precomputed one bounce interreflection. Note as the cubemap resolution decreases,
the banding artifacts become more obvious. We choose 32×32×6 resolution, which
provides a good tradeoff between precomputation time and accuracy.

5.3 The GPU Rendering Algorithm

There are several possible choices to make when implementing the rendering algo-
rithm on GPU. This section describes these choices and discusses limitations with
each implementation.

ACM Transactions on Graphics, Vol. V, No. N, Month 20YY.



24 · Rui Wang et al.

Nl = 64 (0.26%) Nl = 128 (0.52%)

Nl = 256 (1%) Nl = 512 (2.1%)

Fig. 10. The Bunny model casting sharp shadows on the diffuse floor. We compare the fidelity

of shadows by increasing the number of wavelet approximation terms Nl, with the corresponding
percentage of retained coefficients shown in parentheses. We typically use Nl = 128 terms, which

provides a good tradeoff between visual accuracy and rendering speed.

8 × 8 × 6 16 × 16 × 6 32 × 32 × 6 64 × 64 × 6

Fig. 11. This example compares the accuracy of interreflection precomputation when different

cubemap resolutions are applied for the gathering process. Note that a very low sampling rate

can cause severe aliasing (banding) artifacts, such as in the highlighted area. The contrast of these

images have been increased to emphasize the artifacts. We typically use a 32 × 32 × 6 resolution.

For convenience, we separate the rendering pipeline into two parts: lighting update

produces the intermediate buffer P and downsamples the buffer to g which contains
the inner product of the light vector with precomputed transport vectors; view

interpolation accesses the data in g and the BRDF view maps to compute view-
dependent colors. Lighting update is the most expensive part and performed every
time the lighting changes. To communicate the data in g with view interpolation,
we can choose between two options: 1) vertex textures, which binds g as a texture
to be accessed in the vertex shader using vertex texture fetch (VTF); 2) render-to-

ACM Transactions on Graphics, Vol. V, No. N, Month 20YY.



All-Frequency Relighting of Glossy Objects · 25

Lighting Update Performance

0

5

10

15

20

25

30

35

40

30000 50000 70000 90000 110000
Number of Vertices

FP
S

CPU GPU

View Interpolation Performance

0

50

100

150

200

250

300

350

400

30000 50000 70000 90000 110000
Number of Vertices

FP
S

CPU
GPU w/ VTF
GPU w/ PBO

Fig. 12. The two graphs plot the comparison of CPU and GPU performance for the two parts of
rendering algorithm: lighting update and view interpolation. These data were taken from the Lucy

model, simplified to several levels of detail. VTF denotes a GPU implementation using vertex
texture fetch, and PBO denotes using render-to-vertex-array. Both are explained in section 5.3.

vertex-array, which renders g into a pixel buffer object (PBO) to be copied over to
a vertex buffer object (VBO) and accessed in the vertex shader as a vertex array.
Both options are available in the NVIDIA hardware.

Figure 12(a) shows a comparison of the lighting update performance. The GPU
implementation clearly exceeds the performance of the CPU until we get to large
models, when we suspect the GPU has run out of texture memory. The memory
usage on GPU is quite high due to the size of the intermediate buffer P, which is
floating point and has the same dimension as the entire computation domain. In
contrast, the CPU implementation does not need to store P because inner products
are trivially computed via accumulation.

Figure 12(b) shows the view interpolation performance and compares the two
GPU implementations, one using vertex textures (VTF) and one using render-to-

ACM Transactions on Graphics, Vol. V, No. N, Month 20YY.



26 · Rui Wang et al.

Lighting Update for 90k Vertices

0
2
4
6
8

10
12
14
16
18

1 10 100 1000

Total Number of Textures

FP
S

GPU CPU

View Interpolation for 90k Vertices

0
20
40
60
80

100
120
140
160
180

1 10 100 1000

Total Number of Textures

FP
S

GPU CPU

Fig. 13. Comparison of GPU rendering performance when using a different number of textures to
subdivide the computational domain. These data were gathered using a 90K-vertex Lucy model.

vertex-array (PBO). The former has the advantage of not having to perform an
extra copy between GPU memory (an asynchronous ReadPixels call) necessary
in the current hardware, but requires the use of vertex texture fetch, which is a
relatively new feature and suffers from known latency problems. Currently VTF
requires the texture to be 32-bit float point per channel, twice the amount of stor-
age we would normally use. We do at least 10 instructions within the vertex shader
to hide some of the VTF latency known to exist in NV40-class hardware. For mod-
els less than 70k vertices, both implementations are virtually identical, suggesting
that we have successfully hidden the latency of VTF with enough instructions in
this case. However, for models larger than 70k vertices, the PBO implementation
performs faster consistently. It is difficult to explain these performance differences
without further knowledge of the underlying memory architecture on the GPU.

As the number of vertices in a model increases, the size of the textures required
for computing lighting change becomes larger and larger. Because current graphics
hardware is not well suited to handling large floating point textures (with either
dimension approaching 4k), we divide these textures into several smaller textures.

ACM Transactions on Graphics, Vol. V, No. N, Month 20YY.



All-Frequency Relighting of Glossy Objects · 27

We then perform all operations on these smaller sized textures and still accumulate
the result into the same sized pbuffer for rendering as before. Figure 13(a) shows a
log plot of performance as we vary the number of textures used to split up the large
input textures. The graph shows that the lighting update performance is optimal
when we use approximately 4 to 128 textures.

Contrary to intuition, Figure 13(b) suggests that as we increase the number of
textures applied, the view interpolation performance in fact decreases. Since these
intermediate textures are not involved in computing view interpolation, we suspect
that the performance decrease is probably due to some underlying complications
by having more textures on card, even through they do not directly relate to this
part of the rendering algorithm.

To maximize performance in both parts of the rendering algorithm, the optimal
number of textures for this 90K-vertex model is probably around 8 from the graphs.
This results in a texture size of approximately 1700 × 800. In generally it is hard
to predict performance based solely on the texture count or size.

6. CONCLUSION AND FUTURE WORK

We have shown that using non-linear wavelet approximation and separable BRDF
approximation enables rendering of glossy objects under all-frequency lighting en-
vironments at interactive rates. By including interreflections into precomputation,
our technique provides a higher level of realism at no additional cost in render-
ing performance. We have also shown acceleration of both precomputation and
rendering using programmable graphics hardware.

Currently we use only the Haar wavelet approximation for its simplicity. However,
compression of transport vectors by Haar wavelets may not be optimal in terms of
accuracy and efficiency. In the future we plan to experiment with more sophisticated
wavelet filters, in hopes of finding a better wavelet approximation that provides the
same accuracy with fewer non-linear terms. To further reduce precomputed data
size, we plan to exploit data coherence among neighboring vertices, such as using the
clustered principal component analysis (CPCA) presented in [Sloan et al. 2003; Liu
et al. 2004]. As an extension to our current precomputation algorithm on graphics
hardware, we plan to compute the transfer functions of multiple vertices at the
same time. By careful load balancing, we hope to offload an equal amount of work
to the GPU as the CPU, allowing them to operate at full speed asynchronously.

Currently on GPU we are limited to using an orthographic projection for calcu-
lating the BRDF texture coordinates. We have found that for some BRDFs, a single
term approximation is more accurately represented using the polar parametrization
(Eq 11). However, this is currently not implementable on the GPU because some
triangles have vertices whose texture coordinates cross the boundary of the texture,
where the polar coordinates wrap periodically. We would like to be able to interpo-
late the texture coordinates across this boundary, but we cannot currently control
interpolation on the triangle level on modern hardware. The geometry shader,
which is suggested in the Windows Graphics Foundation (WGF) 1.0 specification,
would allow us to implement a correct interpolation, since it enables access to all
three vertices of a triangle and to each vertex’s attributes.

ACM Transactions on Graphics, Vol. V, No. N, Month 20YY.



28 · Rui Wang et al.

7. ACKNOWLEDGEMENTS

The authors would like to thank Paul Debevec for his light probe images and
NVIDIA for kindly providing the latest graphics hardware. The models used in this
paper are courtesy of the Stanford University Computer Graphics Laboratory.

REFERENCES

Agrawala, M., Ramamoorthi, R., Heirich, A., and Moll, L. 2000. Efficient image-based

methods for rendering soft shadows. In Proceedings of SIGGRAPH 2000. 375–384.

Ashikhmin, M. and Shirley, P. 2000. An anisotropic phong BRDF model. Journal of Graphics

Tools 5, 2, 25–32.

Ashikhmin, M. and Shirley, P. 2002. Steerable illumination textures. ACM Trans. Graph-

ics 21, 1, 1–19.

Blinn, J. and Newell, M. 1976. Texture and reflection in computer generated images. Commun.

ACM 19, 10, 542–547.

Bolz, J., Farmer, I., Grinspun, E., and Schröder, P. 2003. Sparse matrix solvers on the GPU:
conjugate gradients and multigrid. ACM Trans. Graphics 22, 3, 917–924.

Cabral, B., Max, N., and Springmeyer, R. 1987. Bidirectional reflection functions from surface
bump maps. In Proceedings of SIGGRAPH 1987. 273–281.

Chen, W.-C., Bouguet, J.-Y., Chu, M., and Grzeszczuk, R. 2002. Light field mapping: efficient

representation and hardware rendering of surface light fields. In ACM Trans. Graphics. Vol. 21.
447–456.

Cohen, M. and Wallace, J. 1993. Radiosity and realistic image synthesis. Academic Press.

Debevec, P., Hawkins, T., Tchou, C., Duiker, H.-P., Sarokin, W., and Sagar, M. 2000.
Acquiring the reflectance field of a human face. In Proceedings of SIGGRAPH 2000. 145–156.

DeYoung, J. and Fournier, A. 1997. Properties of tabulated bidirectional reflectance distribu-
tion functions. In Proceedings of Graphics Interface ’97. 47–55.

Dorsey, J., Sillion, F. X., and Greenberg, D. 1991. Design and simulation of opera lighting

and projection effects. In Proceedings of SIGGRAPH 1991. 41–50.

Fournier, A. 1995. Separating reflection functions for linear radiosity. In Proceedings of the 6th

Eurographics Rendering Workshop. 383–392.

Gortler, S., Grzeszczuk, R., Szeliski, R., and Cohen, M. F. 1996. The lumigraph. In

Proceedings of SIGGRAPH 1996. 43–54.

Greene, N. 1986. Environment mapping and other applications of world projections. IEEE

Comput. Graph. Appl. 6, 11, 21–29.

Heidrich, W., Daubert, K., Kautz, J., and Seidel, H.-P. July 2000. Illuminating micro geom-
etry based on precomputed visibility. In Proceedings of SIGGRAPH 2000. 455–464.

Jensen, H. 1996. Global illumination using photon maps. In Proceedings of the 7th Eurographics

Rendering Workshop. 21–30.

Kajiya, J. 1986. The rendering equation. In Proceedings of SIGGRAPH 1986. 143–150.

Kautz, J. and McCool, M. 1999. Interactive rendering with arbitrary BRDFs using separable
approximations. In Proceedings of the 10th Eurographics Rendering Workshop. 281–292.

Kautz, J. and McCool, M. 2000. Approximation of glossy reflection with prefiltered environment

maps. In Proceedings of Graphics Interface 2000. 119–126.

Kautz, J., Sloan, P.-P., and Snyder, J. 2002. Fast, arbitrary BRDF shading for low-frequency

lighting using spherical harmonics. In Proceedings of the 13th Eurographics Rendering Work-

shop. 291–296.

Krüger, J. and Westermann, R. 2003. Linear algebra operators for GPU implementation of

numerical algorithms. ACM Trans. Graphics 22, 3, 908–916.

Lafortune, E., Foo, S.-C., Torrance, K., and Greenberg, D. 1997. Non-linear approximation

of reflectance functions. In Proceedings of SIGGRAPH 1997. Vol. 31. 117–126.

Lawrence, J., Rusinkiewicz, S., and Ramamoorthi, R. 2004. Efficient BRDF importance

sampling using a factored representation. ACM Trans. Graphics 23, 3, 496–505.

ACM Transactions on Graphics, Vol. V, No. N, Month 20YY.



All-Frequency Relighting of Glossy Objects · 29

Lee, D. and Seung, H. 1999. Learning the parts of objects by non-negative matrix factorization.

Nature 401, 6755, 788–791.

Lehtinen, J. and Kautz, J. 2003. Matrix radiance transfer. In ACM Symposium on Interactive

3D graphics. 59–64.

Levoy, M. and Hanrahan, P. 1996. Light field rendering. In Proceedings of SIGGRAPH 1996.

31–42.

Liu, X., Sloan, P.-P., Shum, H.-Y., and Snyder, J. 2004. All-frequency precomputed radiance

transfer for glossy objects. In Proceedings of the 15th Eurographics Symposium on Rendering.

337–344.

Malzbender, T., Gelb, D., and Wolters, H. 2001. Polynomial texture maps. In Proceedings

of SIGGRAPH 2001. 519–528.

McCool, M., Ang, J., and Ahmad, A. 2001. Homomorphic factorization of BRDFs for high-

performance rendering. In Proceedings of SIGGRAPH 2001. 171–178.

Ng, R., Ramamoorthi, R., and Hanrahan, P. 2003. All-frequency shadows using non-linear

wavelet lighting approximation. ACM Trans. Graphics 22, 3, 376–381.

Ng, R., Ramamoorthi, R., and Hanrahan, P. 2004. Triple product wavelet integrals for all-

frequency relighting. ACM Trans. Graphics 23, 3, 477–487.

Peers, P. and Dutré, P. 2003. Wavelet environment matting. In Proceedings of the 14th

Eurographics Symposium on Rendering. 157–166.

Ramamoorthi, R. and Hanrahan, P. 2001. An efficient representation for irradiance environ-

ment maps. In Proceedings of SIGGRAPH 2001. 497–500.

Ramamoorthi, R. and Hanrahan, P. 2002. Frequency space environment map rendering. In

ACM Trans. Graphics. Vol. 21. 517–526.

Rusinkiewicz, S. 1998. A new change of variables for efficient BRDF representation. In Proceed-

ings of the 9th Eurographics Rendering Workshop. 11–22.

Sillion, F., Arvo, J., Westin, S., and Greenberg, D. 1991. A global illumination solution for
general reflectance distributions. In Proceedings of SIGGRAPH 1991. 187–196.

Sloan, P.-P., Hall, J., Hart, J., and Snyder, J. 2003. Clustered principal components for
precomputed radiance transfer. ACM Trans. Graphics 23, 3, 382–391.

Sloan, P.-P., Kautz, J., and Snyder, J. 2002. Precomputed radiance transfer for real-time
rendering in dynamic, low-frequency lighting environments. In ACM Trans. Graphics. Vol. 21.

527–536.

Soler, C. and Sillion, F. X. 1998. Fast calculation of soft shadow textures using convolution.

In Proceedings of SIGGRAPH 1998. 321–332.

Suykens, F., vom Berge, K., Lagae, A., and Dutré, P. 2003. Interactive rendering with
bidirectional texture functions. Eurographics 2003, Computer Graphics Forum 22, 3.

Veach, E. 1997. Robust monte carlo methods for light transport simulation. Ph.D. thesis.

Wang, R., Tran, J., and Luebke, D. 2004. All-frequency relighting of non-diffuse objects us-

ing separable BRDF approximation. In Proceedings of the 15th Eurographics Symposium on

Rendering. 345–354.

Westin, S., Arvo, J., and Torrance, K. 1992. Predicting reflectance functions from complex
surfaces. In Proceedings of SIGGRAPH 1992. 255–264.

Wood, D., Azuma, D., Aldinger, K., Curless, B., Duchamp, T., Salesin, D., and Stuetzle,

W. 2000. Surface light fields for 3D photography. In Proceedings of SIGGRAPH 2000. 287–296.

Zongker, D., Werner, D., Curless, B., and Salesin, D. 1999. Environment matting and

compositing. In Proceedings of SIGGRAPH 1999. 205–214.

Received Month Year; revised Month Year; accepted Month Year

ACM Transactions on Graphics, Vol. V, No. N, Month 20YY.


